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FOREWORD 

The latest version of the NSWCDD Aeroprediction Code (AP95) calculates aerodynamics 
of weapons that have axisymmetric (circular) body cross-sectional shapes over a wide range of flight 
conditions. While this covers most of the world's weapons, there are occasions where noncircular 
body cross-sectional shapes are of interest in preliminary design tradeoffs. Two of these include 
blended weapon and aircraft design for overall aircraft/store drag reduction or weapon range 
improvement and more efficient utilization of a vertical launcher cell on a ship (this is primarily 
associated with short range missile applications). As a result of these needs, new technology was 
developed and integrated into the AP95 for calculating aerodynamics of weapons with noncircular 
cross-sectional shapes. 
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1.0 INTRODUCTION 

The desire to increase weapon range and maneuverability, to design weapons which are more 
optimum from an aircraft total drag and radar signature standpoint, or to provide optimum loadout 
of multiple missiles in a ship's vertical launcher has driven weapons designers to consider 
nonaxisymmetric body shapes. Some typical shapes are shown in Figure 1. While most missiles in 
the United States and foreign countries in existence today have axisymmetric body configurations, 
these conceptual design tradeoffs of various configurations other than axisymmetric require 
engineering estimates of aerodynamics. Current state-of-the-art methods for predicting aerodynamics 
of nonaxisymmetric body shapes with engineering accuracy are much more limited than for 
axisymmetric bodies. This is primarily driven by the fact that to get reasonable accuracy of the 
aerodynamics requires an accurate description of the body geometry. To describe the geometry of 
a complex body shape accurately can take days or weeks depending on the requirements of the 
aerodynamics code being used. 

,Wm/2, 

rn=kWn 

i. Circular ii. Elliptical Square (O = 0°) 

WJ2. 

/iV^kW™ 

r =kW 'n     ^""m 

iv. Square (0> = 45°) 

"wj^ 
v. Triangle 

r =kW 

vi. Inverted Triangle 

FIGURE 1. BODY CROSS-SECTIONAL SHAPES OF INTEREST 
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The present approaches to computing aerodynamics fall into two basic classes. The first class 
requires the description of the body geometry in some detail for aerodynamic computations. Methods 
that fall into this class may use local slope approaches (tangent-wedge, tangent-cone, Newtonian 
Impact Theory, etc) to estimate the surface pressure. These techniques basically need a freestream 
Mach number and the angle between the freestream velocity vector and the tangent to a local point 
on the body to compute a local pressure coefficient (and other thermodynamic properties if desired). 
No influence of surrounding elements is felt by the particular body element of interest. A typical 
computer program in use today that uses this approach is the Supersonic-Hypersonic-Arbitrary Body- 
Program (SHABP).1 

Another approach that requires detailed geometry input is the so-called paneling method. 
Here the configuration is described by a distribution of sources, sinks and doublets so that the body 
boundary condition of flow tangency is met. The configuration is once again described by panels, but 
here the flow from one panel can affect another panel, as opposed to the local slope approaches. A 
state-of-the-art program that uses this approach is the PANAIR code.2 

A third approach which falls into the class of aerodynamic codes requiring detailed geometry 
inputs are so-called numerical codes. These codes typically solve the full inviscid3 set of equations 
or various versions of the viscous Navier Stokes equations.4 Geometry must be input even more 
accurately here due to the requirement of accurate second-order, partial derivatives in the fluid 
dynamics equations. Manweeks or manmonths can easily be required to describe a complex 
configuration for these types of codes. 

The second class of codes calculating the aerodynamics of a nonaxisymmetric body is based 
on an equivalent axisymmetric body. The beauty of this approach is the fact that an existing 
axisymmetric body code can be used to calculate nonaxisymmetric body aerodynamics if the area 
distribution of the body is known. The area distribution requires a lot less time to define than a 
detailed configuration geometry. On the other hand, one should anticipate possibly larger errors in 
predicting the aerodynamics than an approach where the detailed geometry is required. The ease of 
use. fast turnaround and lower cost may be worth the reduced accuracy however. This type of 
approach was pioneered by the methods of Whitcomb5 and Jorgensen.6"10 

The Missile DATCOM11 code uses the method of Jorgensen to estimate aerodynamics of 
elliptic cross-sectional shapes to any angle of attack (AOA) and other cross-sectional shapes at small 
AOA. However, no such code is available for other than elliptical cross-sectional shapes at high 
AOA. There are several areas where the Jorgensen approach needs improvement. First, the method 
was derived on the basis of slender body theory (SBT) for low AOA and modified Newtonian theory 
(MNT) at higher AOA. The MNT, strictly speaking, is accurate only for higher Mach numbers and 
therefore needs to be corrected for lower Mach numbers. Secondly, most of the data available for 
making these empirical corrections to MNT is at low speed and thus additional data or computational 
fluid dynamics efforts are needed for higher Mach number. Third, the Jorgensen correlation factors 
based on SBT and MNT work reasonably well in predicting normal forces for elliptical configurations 
but not so well for triangular and square cross-sectional bodies. Fourth, the Jorgensen approach uses 
SBT for interference between the wings and bodies with no nonlinear corrections for AOA, Mach 
number or wing shape. The Missile Datcom" improves upon this problem by the use of the 
equivalent AOA method.12 This allows the nonlinear corrections of wing-body lift to be included and 
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extends the AOA boundary to 20-25 deg for interference effects. Finally, no corrections are included 
in the Jorgensen method for the axial force wave component of drag for the noncircular bodies 
compared to the circular bodies. 

While the Jorgensen method has its shortcomings, it is still the method most compatible with 
the NSWC aeroprediction code (APC).13 This is because the APC is currently developed for 
axisymmetric bodies. The goal of the present work is therefore to modify the work of Jorgensen to 
improve upon the shortcomings stated previously. If successful, a more robust, more accurate, yet 
simple code for computing aerodynamics of nonaxisymmetric body missile configurations will be 
available. 
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2.0 ANALYSIS 

The goal of the present work is to extend the APC13 to include simple nonaxisymmetric body 
configurations. As discussed in the introduction, the approach most compatible with the 
axisymmetric body techniques of Reference 13 is one which computes the aerodynamics of a 
nonaxisymmetric body on the basis of an equivalent axisymmetric body. The most developed of these 
approaches is that of Jorgensen.610 As such, it is believed instructive to briefly review the 
Jorgensen^10 method, point out the weak areas discussed in the introduction part of this report, and 
then address the present improved methodology to overcome these shortcomings. 

2.1       REVIEW OF JORGENSEN'S610 METHOD 

Jorgensen's method for the static aerodynamics of a body alone are given by 

CA = (cA)a-o cos2« (1) 

c    =  sin (2a) cos (a/2) 
N A Arcf 

( 

'C 
SB 

dA1 

dx , 
dx 

2r) C.   sin2 

rcf -I ' C  X 
n rdx (2) 

o v    "°/ 
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cM = 
sin (2a) cos( 

\J. ref 

a/2)   f 'O — (xm - x) dx 
dx 

b v   l°> SB 

2r| Cd   sura   / 'O r(xm - x) dx (3) 

'M 
(4) 

*ref 

Equations (2) and (3) allow for continually varying cross sections along the body. Equation (1) is 
an assumed approximation for correlating axial force with AOA. It also requires a calculation of, or 
that experimental data be available for, axial force coefficient at zero AOA. Equations (2) and (3) 
both include the factors (Cn/Cn )SB and (Cn/Cn )N. These factors represent the slender body and 
Newtonian approximations to the local normal force coefficient per unit length of the desired cross- 
sectional shape (Cn) to the similar coefficient for the equivalent circular cross-sectional shape (Cn ). 
The radius of the equivalent cross-sectional shape is determined by 

%     ^ 
A(x) (5) 

7t 

where A(x) represents the area of the nonaxisymmetric body as it varies along the body x-axis. The 
first terms of both Equations (2) and (3) are the terms due to potential flow and the second terms are 
those due to the viscous crossflow. Since SBT is only applicable for small AOAs, the coefficient 
(C /C )CD can only be used for the first term of Equations (2) and (3). On the other hand, 
Newtonian Impact Theory is applicable at any AOA and can therefore be used for the second term 
of Equations (2) and (3). Cd is the crossflow drag coefficient for the equivalent body of revolution. 
Finally, both Equations (3) and (4) are defined about some reference point xm. (Cn/Cn )SB and 
(Cn/Cn )N are given in Reference 6 for several ellipses. (Cn/Cn )N is also given for some squares. 
Reference 11 gives the SB theory values of (Cn/Cn )SB for several configurations. 

To apply the methodology of Equations (1) through (4) to wing-body-tail configurations, 
Jorgensen6 suggests replacing the first term of Equations (2) and (3) with that computed by 
Reference 14. Using this approach, Equations (2) and (3) become 
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f. 

c    = c     sin2a       2rlCdr 

'N " "
NL

    2a    T A. 

sin2 a   C 

\a    J c r dx (6) 

N 

r    _ r      sin2a  A  
2TlCdc 

sin 

2tt A^ rcf -i n r(xm - x)dx (7) 

o  v    "°> N 

CN  and CM  are the potential normal force and pitching moments computed by linearized and SBT 
as defined by Reference 14. 

Reviewing Equations (1) through (7), it is appropriate to specifically point out the weak 
points suggested in the introduction. First of all, Equation (1) assumes (CA)a=0 of the equivalent 
axisymmetric body is the same as that for the noncircular body and that CA varies as cos2a with AOA. 
These assumptions need further investigation. Secondly, (Cn/Cn )N is accurate primarily at high 
Mach number. A correction for lower crossflow Mach numbers is probably required (MN < 2.0) for 
accurate prediction of static aerodynamics at all AOAs and M.'s. Thirdly, additional analytical 
equations need to be derived for (Cn/Cn )N for other than elliptical cross-sectional shapes. This is 
required in order to expand the approachof Reference 6 to a broader range of cross sections. Fourth, 
while Jorgensen discusses the impact of crossflow drag coefficient as a function of Reynolds number, 
he does not offer any methodology to correct for the sudden decrease in the crossflow drag 
coefficient for Reynolds numbers above the critical value as a function of body cross-sectional shape. 
Finally, configuration aerodynamics need to be defined in such a way as to allow the interference 
terms between the wing and body to include nonlinearities. Reference 13 already has these 
nonlinearities included for circular bodies. This methodology has been validated to high AOA and 
for a large range of Mach numbers and configurations. However, this methodology also needs to be 
adjusted for the noncircular bodies being considered. 

The remainder of the analysis section will take each of the problems discussed and define the 
modifications or new methods necessary to attempt to achieve a more accurate and robust way of 
treating noncircular bodies than is available in either Reference 6 or 11. 

2.2       BODY ALONE AXIAL FORCE APPROACH 

The axial force coefficient is composed of three components which arise from the wave drag 
generated by the flow as it is compressed on the body surface, the friction of the air as it passes over 
the body, and the pressure on the afterbody or base caused by the separation of the flow from the 
body surface. Mathematically, this is represented by 
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+ CA   + C, (8) 

Reference 6 alludes to the use of the equivalent axisymmetric axial force for use in the noncircular 
body. It is reasonable to assume that the base drag methodology of Reference 13 could be extended 
to a noncircular body by use of the equivalent diameter. That is 

■N» 
M3 

J
ref / eq 

squares, triangles 

, ellipse, a/b < 1.5 
(9A) 

Here, (dB)eq and (d^)^ of Equation (9A) are the base and reference diameters of the equivalent body 
of revolution computed from Equation (5) and Cp is the negative base pressure coefficient that 
occurs on a circular cylinder with no boattail as a function of Mach number and AOA. 

Equation (9A) applies to configurations which, while noncircular in shape, are not very flat. 
For elliptical cross-section bodies with large values of semimajor to semiminor axis, the 
Equation (9A) relation does not hold. That is because the base pressure coefficient is more like a 
2-dimensional (2-D) versus a 3-D value and the boattail effect should be squared rather than cubed. 
Hence, for ellipses with a/b > 5, 

" "W-o 
f V2 

V  ref/ eq 

ellipses with 

a/b > 5.0 , 
(9B) 

For ellipses, where 1.5 < a/b <5, a linear interpolation between Equations (9A) and (9B) is assumed. 
That is 

f4-o 
'Vs 

kd«r/ eq 

\    «*/ eq 
Mr W.„ I T: ref eqj 

a/b - 1.5 
3.5 

ellipse with 

,1.5 < a/b < 5.0, 
(9C) 

Intuitively, the skin-friction axial force of a noncircular body should be directly proportional 
to the wetted area of the air on the body surface. As a first approximation, this can be estimated by 
the ratio of the circumference on the noncircular body to that of the circular body. Then 
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(CA()NC 

( (Cir) NC 
\ 

27ir eq   y 
(CAf)eq (10A) 

^CA.)eq is the skin-friction drag of the equivalent circular body of radius req 

The wave drag term of Equation (8) is more complicated than the other two components due 
to the fact it is a function of the slope along the body surface as well as the area distribution. Hence, 
to compute the wave drag on an equivalent axisymmetric body would require the product (r dr/dx)e 

to be the same as for the noncircular body. The best way to analyze this term would be through 
numerical computations using codes such as full Euler3 or Navier Stokes.4 However, since time or 
funding does not permit this alternative at present, it will be assumed the wave drag term of the 
noncircular cross-section body is the same as that of the equivalent axisymmetric cross-section body. 

To validate or modify the present approach to determine the ratio of (CA)NC/(CA) , ballistic 
range tests are being conducted at Eglin Air Force Base in Florida. Tests will be conducted using 
10-caliber long, fin stabilized, ballistic rockets of various cross-sectional shapes including circles, 
ellipses, triangles and squares over a Mach range of 0.75 to 3.5. The axial force of the fin's will be 
subtracted from the total axial force to give the body alone values. Of course, the experimental 
results will not break down the components of drag as in Equation (8). Since the Eglin Ballistic 
Range tests will not be available for some time, the approach used during the interim period for body 
alone axial force at zero AOA will be Equations (9), (10) plus the assumption that 

(CAw)eq   =   (CAW)NC (10B) 

The method of Reference 15 will be assumed for AOA changes in CA and Reference 13 will 
be used for fin values of CA. Hence, to compute CA, we first of all determine the equivalent 
axisymmetric body. The axial force is computed as currently done in the AP9513 code for this 
equivalent axisymmetric body with or without fins. The body alone value of CA is then adjusted using 
Equations (9) and (10) for the appropriate noncircular shape and the fin values of CA are held 
constant. CA at AOA is then adjusted according to Reference 15. 

2.3       VALUES OF (Cn/Cno)SB AND (Cn/C^)N 

When applying Equations (3), (4), (6) and (7) to noncircular bodies, values of the parameters 
(Cn/Cn0)sB and (Cn/Cn0)N dJt required for the particular noncircular shape of interest. Cd of these 
equations remains the crossflow drag coefficient of a circular cylinder with the radius defined by 
Equation (5). Values of these parameters for ellipses using both SB and MNT are given in 
Reference 6 and shown here in Figure 2 for convenience. 

Values of (Cn/C )N were not available for many other cases of interest. As a result, 
Appendix A derives this parameter for several cases of interest including squares and triangles with 

8 
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FIGURE 2. RATIO OF LOCAL NORMAL-FORCE COEFFICIENT FOR AN ELLIPTIC 
CROSS SECTION TO THAT FOR THE EQUIVALENT CIRCULAR CROSS SECTION 

various comer radii. Reference 16 contained approximate values of the slender body apparent mass 
parameters which allowed computation of (Cn/Cn )SB for the configurations in the appendix with no 
comer radius. These values were than allowed to go to one in a linear fashion when k goes to 0.5. 
Values of (Cn/Cn )N and (Cn/Cn )SB are given in Figures 3 and 4 for the square and triangular cross- 
sections, respectively, as a function of the comer radius parameter k. Values of (Cn/Cn )SB at k = 0 
were computed by 

'C 
"0/ 

(11) 
SB 

eq 

where As is the apparent mass values given by Reference 16 and Aeq is the equivalent circular cross- 
section area for each of the noncircular shapes of interest. Values of deq for these shapes are defined 
in Appendix A. 

It is interesting to note from Figures 3 and 4, that SBT gives constant values of (Cn/Cn )SB 

for both the triangle and square16 independent of their orientation. On the other hand, Newtonian 
theory values of (Cn/Cn )N vary depending on the orientation of the triangle or square. Newtonian 
impact theory is a function of the sine of the angle between the velocity vector and a tangent to the 
body surface to the second power. As a result, the configuration which has the base of the triangle 
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normal to the flow has a fairly high value of the parameter (Cn/Cn )N, whereas the value when the 
triangle is inverted is about 1/4 of the larger value when the corner is sharp (k = 0). On the other 
hand, Reference 16 shows the apparent mass to be independent of orientation of the triangle and 
square so a value of SBT is obtained for the parameter (Cn/Cn )SB that is independent of orientation 
and is between the two values computed by Newtonian theory for both the square and triangle. 

2.4      NEWTONIAN CORRECTION FACTOR 

Figures 3 and 4 address one of the weak areas in the References 6 and 11 methodology 
discussed previously. A second problem that needs to be addressed is to provide a correction as a 
function of Mach number for the Newtonian theory curves of Figures 2 through 4. Since the slender 
body curves are used at low AOA, and values of normal force are small, it is not as critical that these 
curves he corrected for nonslender bodies. On the other hand, the Newtonian theory curves are used 
at high AOA and could potentially be erroneous at lower Mach numbers. 

Equations (6) and (7) for the body alone normal force and pitching moment will therefore be 
rewritten to include the factor NF which represents the correction in the modified Newtonian values 
of (Cn/Cn )N due to the crossflow Mach number not being infinite. Thus 

C    = C 
'O + c, 

"0/ SB 

NF 
aoJ N 

(12) 

C    = C 
"o/ 

+ C MN 

SB 

'O 
ao) 

NF (13) 

The subscript L and NL in Equations (12) and (13) represent the linear and nonlinear normal force 
and pitching moment components respectively. Both Equations (12) and (13) are based on body 
aerodynamics of a circle of equivalent cross sectional area to that of the noncircular body cross 
section. 

To compute NF, use will be made of available experimental data to compare (Cn/Cn )N of 
Figures 2 through 4. If values of these parameters are not available directly, then the parameter NF 
can be approximated by comparing total force and moment data from tests to that predicted by 
Reference 13 when NF is 1. NF can then be computed to bring the theory more in line with 
experimental data. References used for this phase of the work were 6, 7, and 17 through 24. 

A brief explanation of why the factor NF is needed is in order. Basically, Newtonian impact 
theory assumes all the momentum of an air particle is lost upon direct impact on a body surface. The 
theory is derived based on very high Mach numbers and past comparisons with experiment have 
shown the simple theory does indeed give quite accurate pressure information on simple body shapes 

11 
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as Mach number becomes large and the particle impact angle is near normal to the surface. As a 
consequence of the momentum of each air particle being deposited on a surface upon impact, the 
pressure coefficient on all areas that the flow does not see directly ("shadowed regions"), or leeward 
plane areas, is zero. This Newtonian assumption becomes increasingly erroneous as Mach number 
decreases. While the ratio (Cn/Cn )N tends to mitigate the error somewhat, due to the fact the error 
occurs on both the circular and noncircular configurations, it is logical to assume that the error is 
configuration-dependent. If Equations (12) and (13) were applied only for crossflow Mach numbers 
greater than about 2 to 5, one could probably neglect the factor NF and still achieve reasonable 
accuracy for engineering codes. However, since most tactical weapons fly in the range of freestream 
Mach numbers less than 6, it is very important to have the factor NF defined. 

The first noncircular configuration is the elliptical cross section of Figure 2. This 
configuration has the most experimental data available and therefore is the easiest to define the factor 
NF. Results for elliptical configurations with a/b = 0.5, 2.0 and 3.0 are given in Figure 5. Figure 5 
was derived primarily from the data of Jorgensen6'7 and Shereda, et al. 24in conjunction with the 
AP95.1-' As a result of the combined usage of data and a code, some of the factor NF in Figure 5 
could be from errors in the AP95 itself. However, as seen in Figure 5, if the errors are from the AP95 
they are fairly consistent in terms of a general trend as a function of a/b. 

Figure 5 was derived for AOAs greater than 20 deg since this is the region where one obtains 
the largest amount of separation in the leeward plane of the vehicle and therefore the region where 
Newtonian theory is least accurate. To blend in the factor (NF), with AOA, a linear variation is 
assumed between AOA 0 and 20 deg. That is, 

3.0 

NF, 

2.0 

1.0 

0 

a/b Exp: Approximation 

3.0 V  (Ref24)  

2.0 ©   (Ref6)   

0.5 A   (Ref 6)   

0 1.0 3.0 2.0 

MN = M„ sin a 

FIGURE 5. NEWTONIAN CORRECTION FACTOR FOR AN ELLIPTICAL 
CROSS SECTION (a s 20 deg) 

4.0 
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a 
NF = 1 + [(NF), -1] —  ;  a < 20 1 20 

NF = (NF)j 

(14A) 

;  a > 20 

Several points are worthy of note in Figure 5. First of all, for values of a/b < 2.0, NFj is 
close to 1 at crossflow Mach numbers of 2.0 and higher. Secondly, at low crossflow Mach numbers, 
the a/b = 2.0 and 3.0 configurations generate a large amount of nonlinear normal force compared to 
a circle. This is partly explained by Reference 25. Reference 25 shows that the drag coefficient of 
various flat shapes coalesce at high Mach number but vary widely at low Mach number. The ellipse 
approaches a flat surface as a/b gets large. Thirdly, the configuration for a/b = 0.5 appears to indicate 
a region of supercritical crossflow Reynolds number around MN = 0.5 where the factor NF, decreases 
below 1. However, for a/b = 0.5, the value of (NF) more closely resembles Newtonian theory (NF 
is closer to 1) than the larger values of a/b when MN is less than about 0.8. Finally, to estimate the 
effects of elliptical shapes other than a/b = 0.5,2.0, or 3.0, a linear assumption is made that the factor 
varies between 1.0 for a/b = 1.0 to its value in the Figure 5 for a/b other than 1. Mathematically this 
is expressed as: 

NF= (NF)^ 

NF= {(NF)^ - (NF)^4 (a/b - 2) + (NF)^2 

NF= {(NFW2 - 1} (a/b -1) + 1 

NF= (NF^o.5 

a/b>3.0 

2<a/b<3.0 

l<a/b<2.0 

0.5<a/b<1.0 

a/b<0.5 

(14B) 

The second configuration of interest is the square cross section (see Figures 1 and 3). 
Unfortunately, there are not as much data available for the square and triangular cross sections as 
needed, particularly at Mach numbers between about 1 and 5. However, lower Mach number data 
is available for crossflow drag coefficient (see References 17, 18, 20, 21, 22, 25 through 31) and 
some higher Mach number data in Reference 7. The data of References 20 and 31 in particular were 
useful in defining the Newtonian correction factor at low crossflow Mach numbers. Both these tests 
had the model mounted in a 2-D flow sense and normal to the walls of the wind tunnel. Thus 

MN =M, sin 90 = M_ 

The data from both References 20 and 31 were at a subcritical Reynolds number up to supercritical. 
The values of crossflow drag coefficient were taken at subcritical Reynolds numbers for application 
here and at a MN = 0.4. 
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To compute a Newtonian correction factor from the data of References 20 and 31 basically 
involves computing the value of (Cn/Cn )N experimentally and comparing it with the analytical curve 
of Fisure 3. That is 

NF = 
(cn/c _)N 

(15) 

The values of Cd and Cd come from the References 20 and 31, the values of Wm and de from 
Appendix A for both thec square in the O = 0 and 45 deg roll orientations, and (Cn/Cn \, from 
Figure 3. It should be pointed out that Cd measured in Reference 20 was the traditionafvalue of 
1.2 whereas that measured in Reference 31 was 1.0. It was noted in Reference 31 that flow velocity 
was lost through holes in the mount of the wind runnel wall at each end of the model which accounted 
for this loss. Hence, some of the data of Reference 31 could have been affected by this loss, but in 
comparing it to Reference 20 data, they appeared to be consistent for configurations other than the 
circular cylinder values. 

Results of the Equation (15) calculations at MN = 0.40, based on the Reference 31 and 20 
data respectively, are shown in Figure 6A. Figure 6A shows the factor is much higher for the square 
rotated in the $ = 45 deg roll position than in the $ = 0 roll. This makes sense from the standpoint 
that it is well known that Newtonian theory gives a reasonable approximation to the pressure near 
the region of a blunt tip, even though the Mach number is low. On the other hand, when one gets 
away from the blunt tip, the pressures deviate substantially from experiment. Also, for both the 
squares in the $ = 0 and $ = 45 deg roll orientations, Newtonian theory gives CP = 0 in the rear of 
the configuration, whereas experimental data shows a fairly large negative pressure coefficient. The 
combination of these two factors is why the correction factor is needed. 

Figure 6A gives values of NF near MN = 0.4. To correct for Mach number, Reference 7 data 
was used in conjunction with the aeroprediction code to back out the Newtonian correction factor 
for crossflow Mach numbers other than 0.4. Reference 7 had data for Mach numbers of 1.98 and 
3.88 for AOAs to 20° and 14° respectively on squares, diamonds, triangles and inverted triangles 
with sharp corner radius. Hence, crossflow Mach numbers of 0 to about 1.0 can be obtained for 
k = 0. Figure 6B shows the results from the Reference 7 data for crossflow Mach numbers less than 
about 0.95 for squares at both the 0 and 45° roll orientations. This data is then extrapolated to a 
value of NF = 1.0. For squares at $ = 0°, a value of 1.0 for NF is obtained at MN = 0.4, whereas for 
diamonds. NF = 1.0 at MN = 2.6. Note that the Reference 7 data is in agreement with the 
Reference 21 and 30 data at MN = 0.4. That is, the value of NF from Figure 6A^is identical to that 
in 6B at MN = 0.4. 

Now to derive a value of NF0 (NF at MN = 0) as a function of comer radius, Figures 6A and 
6B have been combined. The value of NF in Figure 6A at k = 0 has been adjusted upward to 
correspond to the value at MN = 0 in Figure 6B. Then the value of NF0 follows the trends in 
Figure 6A except for the initial point at k = 0 being adjusted upward. The adjusted values of NF0 for 
the squares and diamonds are given in Figure 6C. 
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k=r/W 

FIGURE 6C. NEWTONIAN CORRECTION FACTOR FOR SQUARES AS A FUNCTION OF 
CORNER RADIUS AT MN = 0 

To compute the Newtonian correction factor for squares, one first of all picks off the value 
of NF0 from Figure 6C as a function of k and roll orientation. Then Figure 6B is used to correct the 
value of NF0 as a function of crossflow Mach number. The mathematics of this process are as 
follows: 

Square 

NF= NF0 

NF= NF0- ( M
N ~ M

N0) 

1         N; 
NF = 1.0 

(NF0 

MN   S   MNn 

1)   ;  MN,  < MN < 1.0 

MN > 1.0 

(16A) 
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Diamond: 

NF= 

NF=     NF, o 

NK 

M„ - M„ ^ 

0.55 - MK 
"0/ 

MkT < M. 

NF=   (NF)MN=055 

NF= 

MN - 0.55 

1.0 

[0.55 (NF0 - 1)]     ;  MNQ < MN < 0.55 

(NF) 'MN=0.55 

(16B) 

0.55 < MN < 2.6 

MN > 2.6 

where 

MM    =  0.4 - 2.67k  ;  k < 0.15 

M. ;  k > 0.15 
(16C) 

Equation (16C) tends to delay the decrease in NF with increasing values of MN somewhat if the 
square has fairly sharp or sharp corners (similar to the large a/b elliptic case). However, both the 
sharp and rounded results of NF computed by Equation (16) approach 1.0 as MN approaches 1. 

Data for triangular cross sections is more meager than for squares. Reference 31 has the best 
data, with some data available in References 19 and 20. Using the data from these references, all of 
which are for low Mach number, a process similar to that for the square cross-section can be used 
to derive a Newtonian correction factor for triangular shapes. This factor is shown in Figure 7A. The 
only data that was available was for k = 0.02, 0.1 and 0.4. Hence, between these points a straight 
line was drawn. Once again it is interesting to note that when the flow is to the flat side of the 
triangle, the Newtonian correction factor is close to 1. However* when the flow hits the angled side 
of the triangle, the correction factor is much higher. Once again, the process used for the squares to 
correct for crossflow Mach numbers other than 0.4 will be used for the triangles. 

Figure 7B thus gives the value of NF as a function of crossflow Mach number using a 
combination of Reference 7 and the APC as done for the squares. Then Figure 7C combines 
Figures 7A and 7B to correct for corner radius based on a crossflow Mach number of 0. The 
mathematics that defines the calculation of NF is given by Equation (16D) for the triangle and 
Equation (16E) for the inverted triangle. 
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Triansle: 

NF= 

NT-   NF   - 

NF0 

( MN- MN0] 

NT= 

0.80 - ML 

1.0 

MN _< MN, 

(NF0 - 1)   ;  MN  < MN < 0.80 

MN > 0.80 

(16D) 

Inverted Triangle: 

NF-   NT. 

NF= 

( MN - MNJ 
2.4 - M, 

(NF0 - 1)   ;  MN < 2.4 
"0/ 

1.0 ;   MN > 2.4 

(16E) 

section cases. 
M\0 of Equations (16D) and (16E) is defined by Equation (16C), just as for the square cross 
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2.5        REYNOLDS NUMBER EFFECT ON CROSSFLOW DRAG COEFFICIENT 

Reference 13 allows for the crossflow drag coefficient to be impacted by crossflow Reynolds 
number. Numerous references have shown that Cd decreases rapidly above a critical crossflow 
Reynolds number. This value, unfortunately, varies from about 100,000 to 400,000 for circular 
cylinders with most data showing a critical value of 100,000 to 200,000. The variation is dependent 
on a lot of factors including model roughness, wind tunnel turbulence, and configuration shape just 
to name a few. When Reynolds numbers and crossflow Mach number go above critical values, the 
crossflow drag coefficient decreases rapidly and substantially until at a crossflow Mach number of 
about 0.6. it attains its subcritical value. The impact of this sudden drop on predicting normal force 
on a body alone or body-tail configuration can be quite large for lower Mach numbers where the 
effect is the largest. 

The mechanism which causes this sudden drop in the value of Cd , when Reynolds number 
and crossflow Mach number exceed some critical value, is the reattachment of a separated boundary 
layer on the rear of the circular cylinder. This reattachment lowers the pressure drag somewhat on 
the rear of the cylinder, which lowers the overall crossflow drag coefficient over a range of Reynolds 
and Mach numbers. The present AP9513 methodology assumes values of RN of 330,000 and 
M

NC = ° based on the large NASA wind tunnel data set, upon which much of the methodology was 
derived. However, the user of the AP95 is allowed to input different values of RN andMN for the 
given configuration or wind tunnel of interest if these values are known. c ' c 

The AP98 methodology will have several changes from AP95 as far as critical Reynolds 
number is concerned. First of all, the default values of RN and MN will be changed more in line 
with other data sets that appear to be more prevalent. These°new values are therefore RN = 180,000 

andMNc =0.10. Theuserof the AP98 still retains the option to change the default values. The next 
change is to allow a gradual, rather than an abrupt, change in Cd when the critical conditions are 
passed. At present, an effective Reynolds number is used, which is defined in Reference 13, to 
determine whether the RN   value has been exceeded. This value is defined by: 

(Vcff 
R 

ND  I cos a cot a 
+ 2 sin a > - 1  + [1  + (^cota)2]w 

[1  + (»72 cot a)2] 2l'/2 
(17) 

Likewise the normal Mach number to a body is 

M., = M   sin a (18) 

Thus for supercritical flow, 
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(RN)eff > RNC 

and 
MN > M 

(19) 

For convenience, Equation (17) is given in Figure 8A as a function of AOA. As seen in Figure 8A, 
it is much easier to have supercritical flow at low AOAs than at higher AOA. The change being 
added to the AP98 is to allow the minimum value of C. to occur at RN + 25,000 versus when 
Equation (19) is satisfied. In other words, when Equation (19) is satisfied, Cd starts decreasing from 
its value at Rw    = RM . When 

Rx Rw   + 25,000 

the minimum value of C,  is allowed to occur. 
°c 

The final change to the AP95 methodology is to take into account the fact that bodies with 
fins present have different physical flow characteristics than bodies alone. Most of the wind tunnel 
data upon which the characteristics of RN and MN are determined is based on body alone data. 
Since in the vicinity where wings or tails are present, the mechanism of boundary layer reattachment 

6 i- 

(RNW (RN)D 

15 30 45 

a (deg) 

FIGURE 8A. EFFECTIVE REYNOLDS NUMBER AS A 
FUNCTION OF AOA 
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in the leeward plane will be harder to establish, the length of the body where the lifting surfaces are 
present will be taken out of the area for the minimum value of Cd . This length is assumed to be two 
root chord lengths.   Thus, if (Cd ), and (Cd )2 are the sub- and supercritical values of Cd 

respectively, then a modified nonlinear normal force of the body alone for supercritical flow (where 
wings are present) is: 

(CN  ) MOD 
-   1 

2C 

lrcf 

r    ,    «V» 
(CH_), 

2C_\ 

ref / 
(20) 

Before discussing the impact of noncircular bodies on critical Reynolds and Mach number 
values, it is important to discuss how the determination of these values for a circular cylinder are 
arrived at. As already discussed, these values are highly dependent on the wind tunnel and model. 
Most wind tunnel tests give freestream Mach number and Reynolds number per foot as the two 
variables for a given model. Unfortunately, values of RN andMN are generally determined by trial 
and error through the use of Equations (17) through (20) rn conjunction with data for a given test and 
theoretical predictions. Once RN and MN are determined for a given wind tunnel test, they appear 
to be reasonably constant for that test. However, they vary considerably from tunnel to tunnel and 
vary less significantly from test to test within a given tunnel. 

One saving grace of many high Mach number calculations is that one goes through the "drag 
bucket" rather rapidly before AOA is large enough to give meaningful values of CN , which is a 
function of AOA squared. However, for subsonic freestream Mach numbers, it is quiteimportant to 
have good values of RN   and MN   to get good comparisons of normal force on many missile 
configurations. 

If wind tunnel data are not available for a given tunnel, the user of the AP98 can use the 
default values of RN(_ and MN . It is also good to pick values of RN high enough and low enough, 
respectively, to show the difference in aerodynamics with sub- and supercritical flow conditions. 
Through this process, one obtains boundaries for the aerodynamics, as well as a reasonable estimate 
of the aerodvnamics based on default values of MNT   and RN, . 

NC NC 

Since the methodology for computing aerodynamics of nonaxisymmetric bodies is based on 
computing the aerodynamics of an equivalent axisymmetric body, the question arises as to whether 
a relationship can be derived for critical crossflow Reynolds numbers as a function of body cross- 
sectional shape. References 20 and 26 both give values of Cd as a function of crossflow Reynolds 
number and body cross-section shape for MN values near zero. 

Reference 20 correlated crossflow drag coefficient to a parameter (RN k13). For squares at 
$ = 0. it appears the critical value of this parameter based on Reference 20 can be defined as a 
function of k. Thus for squares at $ = 0 deg, 
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Rv 

(RNr)k=0.5 

.083 + 1.36k - 1.44k2 

.1.31 
; 0.02 < k < 0.5 (21) 

For the value of k < 0.02, a value of 0.02 could be used in Equation (21). If the square is rotated to 
<3> = 45 deg (diamond), then a better approximation to the data of Reference 20 is 

Rv 6.33k - 24.1k2 + 26.1k3 

(
R

NA=O.5 
.1.31 

; 0.02 < k < 0.5 (22) 

For ellipses, an approximation to the data of Reference 18 is 

R* 

(RNc)a/b=1.0 

= (a/b) 1.5 
(23) 

Finally, for triangular shapes with the base normal to the flow, the correlation equation for 
the square at $ = 0 deg, Equation (21) appears to correlate the data of Reference 31 reasonably well. 
Likewise, when the flow is in the direction of the triangular tip or inverted triangle where the base 
is to the rear, the equation for the square rotated 45 deg (Equation (18)) appears acceptable. 
Figure 8B gives the values of the functions for the squares and triangles defined by Equations (21) 
and (22), whereas Figure 8C gives the values of the function for ellipses defined by Equation (23). 

6 r 
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(RNr)k = 0.5 

Body 
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k 

FIGURE 8B. CRITICAL REYNOLDS NUMBER FOR 
SQUARES AND TRIANGLES 
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RK 

(RNJa/b = 1.0 

FIGURE 8C. CRITICAL REYNOLDS NUMBER FOR ELLIPSES 

Physically, what Equations (21) through (23) are saying is that when the configuration has 
corners or approaches a flat plate in the direction normal to the velocity vector, the critical value of 
crossflow Reynolds number increases. The amount of this increase is proportional to the sharpness 
of the comers or to the elongation of the body (ellipse). This means that the mechanism which causes 
the "drag bucket" for circular cylinders is harder to establish itself for most noncircular cross sections. 

2.6        WING-BODY CONFIGURATIONS 

Jorgensen6 used a combination of two approaches for the wing-body aerodynamics. The first 
approach was to simply use Newtonian theory to approximate (Cn/Cn )N of Equations (1) and (2) 
for wing-body configurations where the body was noncircular and the wing was a simple extension 
of this. He then used a modified version of Reference 14 to compute the slender body or linear 
theory term of Equations (1) and (2). As shown in Reference 6, this approach significantly 
overpredicted the normal force while giving reasonable results for center of pressure. The primary 
reason for this overprediction of normal force was failure to account for the nonlinearities that occur 
in the wing-body interference factor as AOA increases. 

Missile DATCOM16 improved upon the Jorgensen6 approach by using the equivalent AOA 
method1- to incorporate nonlinearities in the wing-body interference factor. This increased the AOA 
capability to 20-30 deg. On the other hand, Reference 16 did not include triangles and squares for 
high AOA due to the fact Newtonian theory was not developed for those shapes. Also, the 
Newtonian correction factor for lower Mach number was not available. Reference 16 also did not 
include the Newtonian correction factor for all Mach numbers for ellipses. 

References 13 and 32 developed a new approach for incorporating nonlinearities in the wing- 
body and body-wing interference factors. In this approach, each interference term was divided into 
a linear and a nonlinear component. The linear term was estimated by linear theory or SBT and the 
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nonlinear term was estimated directly through use of large missile component wind tunnel data bases. 
For regions where data were not available, the method was extrapolated based on engineering 
judgement and comparison with aerodynamics on various other missile aerodynamic data bases. The 
net result of this approach was average accuracy levels at roll positions of 0 and 45 deg of 
±10 percent on normal and axial force and ±4 percent of body length on center of pressure to AOAs 
of 90 deg. Exceptions to this accuracy were at low Mach number and high AOA where wind tunnel 
data was in question, and at high Mach number and AOA for a configuration with two sets of lifting 
surfaces where internal shock interactions became important. 

As a result, the improved approach for incorporating nonlinearities into the wing-body 
interference factors of References 13 and 32 will be the methods used here for noncircular bodies. 
The overall normal force coefficient equation for any wing-body-tail configuration can be written as: 

CN   ~  CNB   +  [(^WCB)   +  KB(W)) "   + fwCB)   +  kB(W)) ÖwJ (CNa)w 

+  [KB)   
+  KB(T)) «   +  (^(B)   +  kB(T)) Öl] (CNa)T   +  CNT(V) (24) 

The first term in Equation (24) is the normal force of the body alone including the linear and 
nonlinear components; the second term is the contribution of the wing (or canard) including 
interference effects and control deflection; the third term is the contribution of the tail including 
interference effects and control deflection; and the last term is the negative downwash effect on the 
tail resulting from wing-shed or body-shed vortices. The uppercase K represents the interference of 
the configuration with respect to AOA, and the lowercase k represents the interference with respect 
to control deflection. The subscripts W(B) and T(B) represent the change (or interference effect) of 
the wing and tail in the presence of the body, whereas the subscripts B(W) and B(T) indicate the 
additional lift (or interference effect) on the body because of the presence of wings or tails. When 
Equation (1) was originally defined, it was associated with the linear aerodynamics only.14 

References 13 and 32 defined a linear and a nonlinear component of each of the terms in 
Equation (20). The body alone term for noncircular bodies is defined by Equation (12). The 
interference terms are all defined in the general form: 

K = KLT   + AK (M, AR, X, $, a) (25) 
SBT 

The   first   term   KLT    is   known   from   linear   theory   or   SBT   for   circular   cylinder 

configurations. The second term is computed empirically based on data bases and is defined in terms 
of tables as a function of the variables M, AR, A, O and a in References 13 and 32. These tables are 
all based on circular bodies however. The wing alone term is estimated by a fourth order equation 
in angle of attack that is a function of Mach number and wing planform parameters. Finally, the last 
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term in Equation (24) is estimated based on slender body theory and nonlinearities incorporated 
through comparison to data. Once again, References (13) and (32) summarize all the nonlinear 
methods used in computing normal force, pitching moment, and center of pressure for axisymmetric 
body missile configurations. 

Figure 9 gives a qualitative pictorial view of the configurations for which aerodynamics are 
desired. It is believed this set of configurations can be made broad enough to encompass most 
tactical weapons of interest to the community at large. It includes the circles of various diameter, 
ellipses of various eccentricity, and triangles and squares of various orientation as well as corner 
radius. To complement the body geometry, wings have been included at both the O = 0 and 45 deg 
roll orientations on all configurations except the triangular shape (where wings were limited to the 
$ = 0 deg roll orientation only). The question that now must be addressed is how the Equation (25) 
will vary for the noncircular wing-body configurations of Figure 9. 

Fortunately, Nelson,33 Est and Nelson,34 and Sigal35 have performed work on KW(B), KgW and 
kWlB, for low AOAs for noncircular configurations. Nelson33 and Est34 defined the low AOA values 
of KWfB, for elliptical, square and triangular cross-section shapes at moderate supersonic Mach 
numbers using an Euler code in conjunction with low Mach number experimental data. Since the 
equivalent AOA method used SBT for KB(W), no equivalent data for noncircular cross sections were 
given in References 33 and 34 for this parameter. Figure 10A gives the wing-body interference term 
for elliptical cross-section shapes after being divided by that of the circular cross section near a = 0 
deg. This figure was derived from the data of Reference 33 in conjunction with the circular body 
results of Reference 14. The Reference 33 results were given as a function of a'/s„ so they had to 
be translated to equivalent circular values through the relationship 

req a 

s, a'/s, (l - Jc[) + JC 
(26) 

where C, = a'/b'. 

It is interesting to note from Figure 10A that for most practical missile configurations where 
rjs typically varies from about 0.1 to 0.7, and a/b is generally greater than 0.5 but less than 2.0, the 
noncircular K%V(B, deviates from the circular value by, at most, 18 percent and for most cases is less 
than that. 

Reference 34 also showed that for the conditions investigated, kW(B) varied only slightly from 
SBT for any of the cross-section shapes. As a result, the current nonlinear models in References 13 
and 32 will be used directly for this term. 
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Circle, Fins 
at <E> = 0° 

Circle, Fins 
at O = 45° 

Ellipse, Fins 
at O = 0° 

Ellipse, Fins 
at <E> = 45° 

kW„ 

Square, Fins 
at <D = 0° 

r = kW 

Inverted Triangle, 
Fins at O = 0° 

-^rn=kWn 

K[ 
Square, Fins 

at O = 45° 

Square at 0 = 45 
Fins at <E> = 45° 

r = kW 

r = kW 

K..*l 
Triangle, Fins 

at O = 0° 

r = kW 

Square at O = 45° 
Fins at O = 0° 

FIGURE 9. NONCIRCULAR CROSS-SECTION, WING-BODY CONFIGURATIONS 
FOR THE AEROPREDICTION CODE 
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FIGURE 10A. RATIO OF WING-BODY INTERFERENCE OF ELLIPTICAL BODY 
TO THAT OF EQUIVALENT CIRCULAR BODY (REFERENCE 33) 

As a first approximation the body-wing interference term will be assumed to vary from their 
circular cylinder values in a proportional manner to the wing-body carryover. That is, if one defines 

F = 
[KW(B)],,C  a 

[KW(B)]c. a 
(27) 

then 

KB(w>Lc. a   =  F [KB(wJc. a (28) 
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[kB(W)LCi a       F [^(W)^ a (29) 

Also, as already mentioned, 

[kW(B)Lc, «x        [kw(B)Jc, a (30) 

Sigal35 presented a summary of methods of analysis and data bases for noncircular fuselages 
up through about 1990. He defined a method for calculating KW(B) and KB(W) in combination (K^) 
using SBT for elliptical, square and rectangular shapes. The values of K^ given in Reference 35 are 
for the ellipse with the fins at $ = 0 (see Figure 9), and the square at $ = 0 with the fins at 
$ = 45 deg. The results of Reference 35 cannot be compared directly to those of Reference 34 as 
presented in Figure 10A, except in a qualitative sense, due to the fact Reference 35 presents KW(B) + 
KB(W) = KWB and Reference 34 presents only KW(B). However, if one assumes Equations (27) and (28) 
can be used in conjunction with Figure 10A, a value of K^ can be computed and compared directly 
to that of Reference 35. This is done in Figure 10B for ellipses with values of a/b = 2.0 and 0.5 
respectively. Note that the two methods tend to merge near req/s = 0 and deviate substantially near 
req/s = 1.0. The Reference 35 technique relies solely on SBT whereas the Reference 34 method is a 
combination of numerical calculations for r/s < 0.8 and experimental data at low Mach number for 
r/s = 1.0. Since Reference 33 was based on numerical calculations, it will be used as the basis for low 
angle of attack corrections to the circular value of KW(B) for elliptical cross-section shapes. 
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FIGURE 10B. RATIO OF TOTAL INTERFERENCE OF ELLIPTICAL BODY TO 
THAT OF AN EQUIVALENT CIRCULAR BODY USING TWO METHODS 
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It should be emphasized that Figures 10A and 10B are the low AOA values of KW(B1 and 
KB AV, and say nothing about how KW(B) and KB(W) will vary with AOA. As a result, some assumptions 
will be made. References 13 and 32 defined KW(B) and KB(W) as shown in Figures 11 and 12. As seen 
in Figure 11. KW(B, has five parameters which are defined in tables as functions of wing aspect and 
taper ratio for various values of r/s, AOAs and M„'s. It will be assumed here that the Figure 10 
results will be applied to the SBT value of KW(B) and KB(W) (that is, the first term of Equation (9)). 
Then if ac is held constant, dKW(B/da will change. However, aD and ccM will be assumed to be the 
same as the circular body shape. In other words, at low to moderate AOA, the body cross section 
is allowed to change the interference factors from their circular-body values, whereas at high AOA, 
it is not. Also, as a first approximation, the values of AKW(B) and AKB(W) available in the AP95 will 
be assumed to be independent of cross-section shape at AOA. 

Figure 10 was based on fins located at roll position of zero. References 13 and 32 have 
nonlinear treatment of fin carryover interference for both roll positions of 0 and 45 deg. As a result, 
the SBT results of Figure 10 will be applied to the body with the fins in both the O = 0 and 45 deg 
orientation. Of course, the nonlinearities with Mach number, AOA and fin shape are different for 
these roll orientations and will be used as presently done in References 13 and 32. As already stated, 
Equations (27) through (30) are used to compute KB(W), kW(B) and kB(W) for noncircular cross sections 
when the method of References 33 and 34 are used to compute KVV(B) for the ellipse. 

Reference 34 also presented results for [KW(B)]o=0 for the triangular and square shapes. Two 
methods were used in that reference. For k values between 0.125 and 0.5 and r/s between 0.167 and 
0.667. a numerical code was used. To obtain the value of KW(B) for r/s = 1.0, the incompressible data 
of Reference 18 was used in conjunction with the incompressible form of the Bernoulli equation.34 

That is. 

. ■> 

P  + ^~  - 0  = P.- ^y- (31) 

P -  P. 
Since. Cp =  , Equation (31) can be written as 

!/2 P«v- 

cP (32) 

Values of CP are available from Reference 18 at low Mach number and for the squares with k = 0.2 
and the triangles with k = 0.175. Following Reference 34. 

v 
VN\V        V Q K

W(B, = — = — cos e (33) 
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dK„ 

2.0 

1.6 

Kw(B) = [KW(B)]SBT + f([AKW(B)]a=0, ac, , aD, aM, 4>) da 

[AKw(m]a=0 

dK, 
\ 

■W(B) 

-V 
da SBT = f(r/s) 
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FIGURE 11. GENERIC REPRESENTATION OF KW(B) WITH AOA 

dKß(w) 

^~"'~~                          I        ^^                 SBT/LT 

N.      [KB(W)JM1N 

1                                                                     1 
1                                                                     1 

a1 
a (deg) 

a, 

dKP 
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FIGURE 12. GENERIC REPRESENTATION OF KB(W) WITH AOA 
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then, using Equations (32) in (33) one obtains 

Kw(B) = cos e Jl ~ CF (34) 

V
N\V of Equation (33) is the velocity normal to the wing and 0 is the angle between the normal to the 

wing and a tangent to the body surface. If the wing is perpendicular to the body surface then 
6 = 0 deg and Equation (34) becomes 

K W(B) =   A (35) 

Results from Reference 18 were used for CP at the various locations of the wings in Figure 9. Several 
values of CP were available in Reference 18 as a function of Reynolds number. Table 1 gives the 
pressure tap where values of CP were taken from Reference 18 as a function of the body/wing 
orientations of Figure 9. Also given in the table are the values of KW(B) computed from Equation (35) 
where the CP values of Reference 18 were averaged for both subcritical and supercritical Reynolds 
numbers. While there was significant variation in CP for the various Reynolds numbers, as seen in 
Table 1, when the values were averaged, there was not a great deal of difference in KW(B) between the 
subcritical and supercritical case. 

The values from Table 1 are nondimensionalized by the SBT value of KW(B) for a circle at 
r/s = 1 (which is 2.0) and plotted in Figure 13. A straight line interpolation is assumed between the 
value of k = 0.175 or 0.2 to 0.5. For values of [KW(B)]NC at k = 0 and 0.1, Reference 29 data was 
referred to. This data, taken at M = 0.31, is also at a low enough Mach number to be considered 
incompressible, so it complements the data of Reference 18 quite nicely. However, only two cases 

TABLE 1. ESTIMATED VALUES OF KW(B,* FOR r/s = 1.0 AT LOW MACH NUMBER 
FOR VARIOUS BODY CROSS SECTIONS AND FIN LOCATIONS (DATA FROM REFERENCE 18) 

Configuration 
Shape and Fin 
Location 

-*- 
k = 0.2 k = 0.2 k = 0.2 k = 0.2 k = 0.175 

T 
k = 0.175 

Pressure Tap 
Orifices From 
Reference 18 

11.23 5,20 5,29 1. 11. 17,23 8,24 8.24 

K-.v E 

Subcritical Rs 

Supercritical RN 

1.52 
1.40 

1.6 
1.56 

1.59 
1.76 

1.34 
1.32 

1.48 
1.70 

N/A 
1.54 

K\V.B,   ~  » 

N 

£ Cp/N 
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of Figure 9 were available in Reference 29. These were the cases for the square body at roll = 0 and 
fins at roll = 45 deg and the square body at roll = 45 deg and fins with roll = 0 deg. The other cases 
shown in Figure 13 were then extrapolated from their values at k = 0.2 to k = 0 based on the data for 
the two cases from Reference 29 as a guide. Also, note that Figure 13 was derived based on 
calculations of a wing-body with body circular cross-section diameter of W. 

In analyzing Figure 13, it is seen that all cross sections are less efficient than the circle in 
producing wing-body carryover normal force near M = 0 and at r/s = 1.0. For k = 0, the value of 
KW(B) for the square varies between 1.14 and 1.5 depending on its orientation and the location of the 
fins, whereas the triangle and inverted triangle are approximately 1.5. These values compare to the 
circular cylinder value of [KW(B)]r/s=1 = 2.0. Compare these values to those of Figure 10A, which are 
greater than one for values of a/b > 1.0. Also note that Figure 10A is based on a reference area of 
7rdeq

2/4 versus TtW2/4. This brings us to a dilemma as to why the interference factors appear so 
different. The answer lies in the scaling. The following several paragraphs, in addition to 
Appendix B, attempt to explain this. When Figure 13 is multiplied by the slender body theory scaling 
parameter derived in Appendix B, the results are based on n&^IA and are then consistent with those 
of Figure 10A. 

In trying to develop a simple way to calculate aerodynamics of noncircular wing-body 
configurations, there is an apparent scaling dilemma. The body aerodynamic calculations would 
appear to be more appropriately done based on a circle of equivalent cross section area to the 
noncircular cross section. However, the wings would like to see a body of size equal to that of a 
circle of diameter W (see Figure 13). This problem does not arise for bodies alone, but only when 
wings are placed on the body. One could therefore calculate the aerodynamics of the wing body 

TTW
2 

based on a circle of diameter W and then multiply the body aerodynamics by A /  or 
=4       4 

calculate the aerodynamics based on a circular cylinder of diameter deq and multiply the wing 
aerodynamics by another scaling parameter defined in Appendix B. The latter approach is chosen for 
the squares and triangles so a consistent approach for body alone aerodynamics is obtained with the 
ellipses. 

In trying to understand this scaling factor, resort is made to slender-body-theory (SBT). Using 
TCW2 

SBT, one can rigorously show that there is a factor of A / between the equivalent circular 

case and a square or triangle if the square or triangle is represented by a circular cylinder of diameter 
W versus deq. Likewise if the diameter deq is used for the triangle or square as opposed to W, one can 
rigorously show there is a factor that multiplies the wing-body and body-wing contributions for low 
AOA. This factor is a function of r/s and wing area. Appendix B gives a thorough discussion of 
scaling using SBT and its implications on calculating aerodynamics of configurations with noncircular 
cross section bodies. The slender body scaling factors derived in Appendix B are required for use 
in computing aerodynamics of a nonaxisymmetric body with an axisymmetric body code. 

Figure 13 gives values of KW(B) for squares and triangles at the limiting value of r/s = 1. Thus, 
to relate the value of KW(B) at some value of r/s other than 1 to Figure 13, a linear assumption is used, 
similar to what occurs in SBT.14 Hence, 
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■■   wfßvr ■W(B)JNC ^W(B)J (B)J NC 
r/s = l 

- 1   r/s + 1 (36) 

1.0 

o 
S 

0.5   = 

0 0.1 0.2 0.3 0.4 0.5 

FIGURE 13. IMPACT OF SQUARE AND TRIANGLE BODY CROSS SECTIONS ON 
LOW MACH NUMBER VALUES OF KW(B, (DATA FROM REFERENCES 18 AND 29 

AND BASED ON Arcf = 7iW74) 

Using the value of [KW(B)]NC computed from Equation (36) for a given r/s, the nonlinear models of 
References 13 and 32 are once again used to relate the wing-body aerodynamics as a function of 
AOA and Mach number. Equations (27) through (30) are used for the other interference terms, in 
analogy to the elliptical cross-section case. 

2.7       WING-BODY-TAIL CONFIGURATIONS 

Wings and tails will be assumed to be in line at either roll positions of $ = 0 or 45 deg. This 
will allow the new wing-tail interference model developed and discussed in Reference 32 to be used. 
While this model will probably be impacted by noncircular shapes, it is believed that it is probably less 
of an impact than on either KWB, or KB(W|. As a result of this assumption, the tail can be analyzed just 
as the wing, for the body cross section of interest at the tail. The only difference will be the addition 
of the down wash effect on the tail produced by the wing. 

2.8       VARIABLE BODY CROSS-SECTIONAL SHAPES 

The discussion in the analysis section to this point has assumed a constant noncircular body 
cross-sectional shape. That is, the nose, afterbody and boattail or flare all have the same cross- 
sectional shape. These shapes could be circular, elliptical, square or triangular and oriented as shown 
in Figure 9. In principal, the methodology for noncircular shaped missile configurations discussed 
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in sections 2.2 through 2.7 for constant cross-sectional shape can be applied to configurations which 
have a variable cross section. To do this will require different values of the parameters (Cn/Cn )SB, 
(C /C )N, NF and interference factors for each of the different cross-sectional shapes. From a 
practical standpoint, only two different cross-sectional shapes will be allowed with a transition region 
between. For example, if the front of the missile were circular and the back elliptical, a transition 
region between circular and elliptical shape is necessary from a practical standpoint. Figure 14 
illustrates a variable cross-section elliptical shape which was taken from Jorgensen.6 The front or nose 
of the missile consists of an ellipse of a/b = 0.5 and the rear, an ellipse of a/b = 2.0, when viewed from 
the top or planform view. It is necessary, therefore, to have a region that smoothly contours the nose 
ellipse to that of the afterbody. The cross-section area of this configuration remains constant from 
the end of the nose to the end of the body. This also means the equivalent diameter of a circular cross 
section also remains constant. However, the noncircular slender body and Newtonian factors are 
significantly different, which means the normal force, pitching moment and center of pressure will 
change substantially. 

0.707 d 0.5 d ELLIPTIC CROSS SECTIONS, 

a/b=2 

3d- 

,0.3535 d 

.0.6186 d 
ELLIPTIC CROSS 

SECTIONS 

- 0.4041 d Model dimensions with 
d = 6.6 cm (2.6 in.) 

«3 = 3d. 

FIGURE 14. ILLUSTRATION OF A CONFIGURATION WITH A VARIABLE, NONCIRCULAR, 
CROSS-SECTIONAL SHAPE: TOP OR PLANFORM VIEW (FROM REFERENCE 6) 

Assuming the nose of the Figure 14 has a constant cross-sectional shape, the afterbody has 
a length of constant cross-sectional shape of length d3 (which is equal to the boattail or flare length 
if a boattail or flare is present), then the normal force, pitching moment and center of pressure for the 
representative body alone configuration of Figure 14 can be written as 

cN = E 
i=l 

'O 
SB 

'O (NF)C. 
"NL 

N 

(37) 
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cM = E 
3 —* 'O 

i\'L  (Xm        XCP 

SB 

'O 
(NF) CNKL (xm - xcp) (38) 

VCP (39) 

In Equations (37) and (38), each section of the body is assumed to have its individual linear and 
nonlinear component of normal force and likewise to have its individual center of pressure relative 
to some desired reference location, xm. xCP and xM of Equation (39) are in dimensions of body 
diameters or calibers. The local values of (Cn/Cn )SB and (Cn/Cn )N for sections 1 and 3 are known 
from Figures 2 through 4, and NF, from Figures05 through 7. The values of these parameters for 
Section 2 are assumed to be the average of those for Sections 1 and 3 for this case. Equations (37) 
through (39) thus allow some approximate accounting for the variation of body cross-sectional shape 
along its length. 

2.9       SUMMARY OF COMPUTATIONAL PROCEDURE 

The method chosen to compute aerodynamics on configurations of noncircular cross-sectional 
shapes extends the method of Jorgensen6 for the body alone, uses the approach of Nelson33 and Est 
et al./' to correct KW(B, at low AOA, and uses the methods of References 13 and 32 to include 
nonlinearities in all the interference terms. No changes in the parameters kVV(B) and CN computed 
by References 13 and 32 for circular shapes have been made for noncircular shapes. K^ and kB0V) 

are assumed to vary in a similar fashion to KW(B) with respect to body cross-sectional shape. 

To compute the aerodynamics on a noncircular shape, the procedure outlined below is 
recommended. 

1.        Obtain the cross-sectional area distribution as a function of length. This may be available 
from a drawing if not given directly. 
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2. Approximate the body by one which is consistent with the logic of the aeroprediction code. 
This code requires a nose, afterbody and boattail/flare. The afterbody and boattail/flare length 
can be close to zero if the configuration is only a nose shape. If the configuration is a nose- 
afterbody with no boattail/flare, then the boattail/flare length can be zero. 

3. Determine if the noncircular cross-sectional shape is the same or approximately the same. If 
it is, then pick an option from Figure 9 that most closely represents the cross section and roll 
position of interest. 

4. Based on this cross-sectional shape and the cross-sectional area distribution from 1, a circular 
body of diameter deq is formed of given nose, afterbody and boattail/flare length. Factors 
(Cn/Cn )SB ' (Cn/Cn V and ^ arG comPuted for tne shaPe of interest. RNc and MNc are 
also defined for a given circular shape. 

5. If fins are present, interference factors are computed for the cross section and fin orientation 
of interest at a = 0, based on a body of diameter deq. These aerodynamics are combined with 
the equivalent body aerodynamics by multiplying the wing-body contributions by a slender 
body theory scaling factor. 

6. Total nonlinear aerodynamics for the equivalent axisymmetric body are computed based on 
Reference 13 for fins at 0 = 0 and Reference 32 for <E> = 45 deg roll. 

7. Total configuration aerodynamics are then computed using the circular body computations 
from 6 in conjunction with the noncircular body information from 4 and 5. 

8. If the configuration has a variable noncircular cross-section shape, then the length {3 must be 
defined since it is assumed ^ = Hn. Also if a boattail/flare is present, {3 is assumed to be the 
boattail or flare length. Choose two cross-sectional shapes from Figure 9 to represent ^ and 
{3. Instructions 4 through 7 are then repeated for the variable cross-sectional shape. 
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3.0 RESULTS AND DISCUSSION 

The performance of the new nonaxisymmetric methodology was evaluated by applying it to 
an extensive array of aerodynamic configurations, including two which were outside the range of the 
data base used in the development process. Before moving on to consider specific examples, some 
time may be saved by discussing up front how the question of subcritical versus supercritical flow, 
previous!}' mentioned in Section 2.5, was handled. First, a word about the actual input parameters 
that are used in AP98. The critical Reynolds number input is basically treated as the value for a 
circular cylinder, which is then adjusted internally in the code to get the critical Reynolds number for 
a particular noncircular cross section. Thus, when it is mentioned that a particular value for RN is 
used for a given computation, it means that this number is used in the actual input file, but it is tnen 
modified by the code depending on the body cross section being modeled. Only in the case of a 
circular cylinder will this be the actual value used to determine the status of the flow. For the critical 
crossflow Mach number, MN , the value that will be specified as an input in the following discussions 
will actually be an increment to the default values of the "drag bucket" boundaries. For example, by 
default, the critical flow region starts at a crossflow Mach number of 0.1 and ends at a crossflow 
Mach number of 0.54. If a value of -0.1 is specified for the critical crossflow Mach number input 
(which will be identified as AMN ), then the range of the supercritical flow region is shifted to fall 
between crossflow Mach numbers of 0.0 and 0.44. Note thatMN is adjusted by shifting the location 
of the drag bucket to higher or lower crossflow Mach numbers and not by changing the width of the 
bucket. Thus, it is possible that a best fit to data may be obtained by actually having the initial dip 
in the curve occur at a negative crossflow Mach number in instances where supercritical flow occurs 
very near MN   = 0 and the drag bucket is relatively narrow. 

If a particular experimental data set included results for a circular body, the two parameters, RN 

and AMN , were adjusted for a "best fit" to this case and then kept constant for all noncircular 
computations. If no circular body information was available for a given data set, these two 
parameters were adjusted to give optimum agreement with the noncircular data. In the latter case, 
it could certainly be argued that a portion of this adjustment could actually be a correction for 
nonaxisymmetric geometry effects and not strictly for supercritical-subcritical flow. While it is 
recognized that this could be true, it also seems legitimate and even necessary to adjust these 
parameters to account for wind tunnel and model variations. With a more extensive data base, it 
might be possible to make these corrections with a higher degree of confidence. Fortunately, as 
explained previously in Section 2.5, given a moderately high Mach number, the issue is no longer of 
such great importance. In addition, for body cross sections with sharp corners, the transition 
Reynolds number becomes high enough so that supercritical flow is very difficult to establish, and so 
the uncertainty is largely removed for configurations of this type. 

If one is computing aerodynamics on a noncircular cross section shape for which no 
experimental data exist, it is recommended that one of two alternatives be exercised.  The first 
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alternative is to use the default values of RN and MN , which are set in the code to 180000 and 0.1, 
respectively. The second alternative is to modify these values to more closely reflect the performance 
of a given wind tunnel if previous experience allows this to be done. At low Mach numbers, correct 
selection of these parameters is quite important, whereas at higher Mach numbers, it is not so critical. 
This point is illustrated in Figures 15A and 15B. Figure 15A gives values of normal force coefficient 
for a circular cylinder from Reference 36 at M = 0.6. Both subcritical and supercritical results are 
shown from AP98 along with the values resulting from an optimized selection of the crossflow 
Reynolds number parameters. Experimental values are shown for comparison purposes. As can be 
seen, there is a substantial difference at this Mach number between subcritical and supercritical values. 
In contrast, Figure 15B shows the same information for this cylinder at M = 2.0. In this instance, 
there is very little effect from crossflow transition. 

3.1       BODY ALONE CONFIGURATIONS 

The first set of validation runs was performed on the large experimental data set of 
Reference 7. The geometric configurations contained within this set are shown in Figure 16. 
Included are two circular bodies, 1.4 inches in diameter, with 3.0-caliber tangent ogive noses, and 
either a 7.0-caliber or 3.0-caliber cylindrical afterbody, giving 1/d (length/diameter) ratios of 10 and 
6. The critical Reynolds number parameters were adjusted using these bodies, and optimal settings 
were found to be RN = 330000 and AMN = -0.2. The noncircular bodies in the data set are 
squares, diamonds (squares at a 45 deg rolf position), triangles, inverted triangles (triangles at a 
60 deg roll position), and ellipses with axis ratios of 2:1,1.5:1,0.67:1 (1.5:1 at 90 deg roll), and 0.5:1 
(2:1 at 90 deg roll). All bodies have the same cross sectional area as the circle, and the distribution 
ofthat area along the longitudinal axis is the same as for the circle. The squares, diamonds, triangles, 
and inverted triangles have very small corner radii and were assumed to have a value of k equal to 
0. All noncircular bodies are identical in length to the 1/d = 10 circular cylinder except for a 2:1 
ellipse and a 0.5:1 ellipse, which have the same length as the 1/d = 6 cylinder. Mach numbers were 
1.98 and 3.88. 

Figures 17A through 17C and 18A through 18C show the results of the AP98 computations 
for lift coefficient, lift to drag ratio, and center of pressure location (referenced to the nose tip in this 
and all future cases) compared to the experimental data for the 1/d = 10 ellipses at M = 1.98. The 
circular body results are shown in each figure for reference. In most cases, the lift coefficient 
comparisons, found in Figures 17A and 18A, are quite good, with the computed values tending to 
be somewhat low at the higher angles of attack. This is especially true of the 0.67:1 and 0.5:1 axis 
ratio cases. Since the circular body values tend to be lower than the data in this region, this trend is 
not surprising. The noncircular computations rely on the circular results as a starting point and are 
thus influenced by their behavior. The lift to drag ratios and the center of pressure locations for the 
2:1 ellipse, found in Figures 17B and 17C, respectively, are in very good agreement with experimental 
data. These comparisons for the 0.5:1 ellipse are found in Figures 18B and 18C. While not as good 
as for the 2:1 ellipse, the variations are within the accuracy limits of the code. Figures 19A through 
19C show the same comparisons for the 2:1 and the 0.5:1 ellipse at M = 3.88. For the lift 
coefficients, found in Figure 19A, the 0.5:1 ellipse compares with data well, but the 2:1 ellipse tends 
to be high at a = 10 and above. As can be seen from the circular body results shown on the same 
plot, this is to some degree a carryover effect. The lift to drag ratios and the center of pressure 
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comparisons are shown in Figures 19B and 19C. The lift to drag ratios are in reasonable agreement 
with the wind tunnel results with the greatest discrepancies coming for the 0.5:1 ellipse. The center 
of pressure locations agree well with experiment in all instances. Finally, results for computations 
of the 2:1 and 0.5:1 elliptical bodies of 1/d = 6 are shown in Figure 20. In this instance, the 2:1 results 
are very good with the 0.5:1 values tending to be low, along with the circular body numbers. 

Figure 21A through 21C show the lift coefficient, lift to drag ratio, and center of pressure 
comparisons for the squares and diamonds at M = 1.98. Once again, the circular body values are 
shown for reference. For lift coefficient, found in Figure 21 A, the square results are quite good, 
being just a little high at the higher angles of attack. The diamond values tend to follow the same 
pattern as the ellipses, being low above a = 12 deg. The lift to drag ratios are shown in Figure 2IB 
and are in very good agreement with the wind tunnel results. The center of pressure locations are 
presented in Figure 21C and are well within the accuracy limits of the code. The results for these 
cross sections at M = 3.88 are presented in Figures 22A through 22C. In this case, the lift coefficient 
results in Figure 22A are seen to be high for both cross sections. A comparison to the circular body 
results, which are also shown, indicates that they are in large part following the established trend. 
A look at Figure 22B shows that the code does well predicting lift to drag ratio for these conditions 
with the exception of a few low a instances. It should be noted that with angles of attack of 2 or 
4 deg. it can be difficult to measure drag accurately in the wind tunnel, so some disagreement in this 
region could be attributed to experimental uncertainty. The center of pressure results, shown in 
Figure 22C, agree well with the experimental data. 

Results for the triangles and inverted triangles at M = 1.98 are shown in Figures 23A through 
23C. Overall, the lift coefficient comparisons, presented in Figure 23A, are not as good as for the 
other body cross sections, with most values being too low. This is partially a reflection of the circular 
body results, but also indicates some uncertainty in the modeling of triangles and inverted triangles 
because of a scarcity of data. On the other hand, the lift-to-drag and center-of-pressure results shown 
in Figures 23B and 23C are in very good agreement with the wind tunnel results. The M = 3.88 
comparisons for these cross sections are shown in Figures 24A through 24C. Here, the lift coefficient 
values, found in Figure 24A, tend to be somewhat high above a = 8 deg, but this is in agreement with 
the circular body results. The lift-to-drag ratio comparisons in Figure 24B are fairly good, with some 
discrepancies at lower a. especially for the circle. As mentioned before, this situation could be 
attributed to the difficulty of measuring drag at low angles of attack. The center of pressure results 
in Figure 24C compare favorably with the wind tunnel measurements for triangles, but are slightly 
outside the accepted range for inverted triangles. If it is assumed that AP98 will be allowed slightly 
more leeway in modeling noncircular bodies, then these results are certainly acceptable. 

The second set of experimental data that was used in the validation process came from 
Reference 36. The configurations tested were essentially identical to the circular body and the 2:1 
and 0.5:1 ellipses in the first data set (see Figure 16), except for a larger circular body diameter of 
2.6 inches. The length of the circular cylinder was 10 calibers, and both ellipses had this same total 
length. The wind tunnel tests were conducted at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0. The 
Reynolds number, based on the diameter of the circular body, was 650000 at the first two Mach 
numbers and 380000 at the others. RN was held constant at 330000 for all computations. The best 
value of AMN was found to be -0.1 at all Mach numbers except M = 0.9, where a value of 0.0 was 
used. The results of the AP98 computations are compared with the experimental results in Figures 25 
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through 29. Each figure shows the computed and experimental values of normal force coefficient for 
the two elliptical cross section configurations as well as for the circular body at a single Mach 
number. In addition, Figures 25,27 and 29 have B and C sections which show comparisons for axial 
force and center of pressure location, respectively. The normal force 2:1 ellipse comparisons are, in 
general, quite good. Significant deviations from the experimental data, especially at the higher Mach 
numbers, tend to track the circular cylinder results. At the lower Mach numbers and lower angles 
of attack, there is some erratic behavior that is most likely related to the crossflow transition effects. 
The 0.5:1 ellipse comparisons are not as good. The M = 0.6 results are off the most, especially at 
higher angles of attack where the AP98 code significantly overpredicts the experimental values. It 
should be noted that the experimental results in this case behave in a rather erratic manner, actually 
leveling off and decreasing slightly at the highest oc's. This could well be a transition effect under 
these conditions and the computed results could be brought into closer agreement by adjusting the 
transition parameters, but that would be outside the initial guidelines set forth earlier. As Mach 
number increases, the comparisons become better and are quite good at M = 2.0. The deviations tend 
to be in the direction of the circular cylinder results. The axial force results are quite good at M = 
2.0, but do not match the experimental data as well at the lower Mach numbers. This is especially 
true for the 0.5:1 ellipse. The discrepancies could be due to difficulty in transition modeling at low 
Mach numbers or possibly to experimental uncertainties in measurement. The predicted center of 
pressure locations exhibit reasonably good agreement with wind tunnel results with some substantial 
deviation for the 0.5:1 ellipse. This problem is most evident at low angle of attack and low Mach 
number, indicating that it may be associated with transition modeling. Transition from supercritical 
to subcritical flow can produce significant shifts in center of pressure. 

The next set of data considered was taken from Reference 29. The family of configurations 
tested in the wind tunnel is shown in Figure 30. There is a 12-inch-long body that can have four 
different cross sectional shapes. One is a circular cylinder and the other three are squares with 
different corner radii corresponding to k = 0.0,0.1, and 0.2. In all cases, the body width is 2 inches. 
In addition, there are two different nose shapes. One is a 3-inch-long blunt nose and the other is a 
4-inch-long sharp nose. These same body shapes were tested in the 45 deg roll position, which 
produces a diamond configuration. The Mach number for all tests was 0.31 and the Reynolds number 
was 1.3 million per foot. For the computations, the value of RN was set to 285000 for all cases. AMN 

was set to -0.1 for the blunt nose configurations and to 0.0 for the sharp nose runs. The computed 
and experimental normal force coefficients for the square orientation bodies with the blunt nose are 
shown in Figure 31 A. The circular body values are also included for reference purposes. As can be 
seen, the AP98 results are very good at k values of 0.0 and 0.1, but tend to be somewhat high for 
k = 0.2 at the higher angles of attack. The same trend is observed for the diamond orientation in 
Figure 32A. The center of pressure predictions for the squares and diamonds are presented in 
Figures 3 IB and 32B. While most comparisons are of acceptable accuracy, there are substantial 
deviations from wind tunnel data for the shapes with sharper corners and for the circle at low angle 
of attack. Comparisons tend to improve as a increases, which indicates that transition modeling may 
once again be the problem. With such low Mach numbers, transition effects on center of pressure 
location can be quite dramatic and, unfortunately, very difficult to model. In Figure 33, the normal 
force coefficients for the k = 0.2 square and diamond body orientations with the sharp nose are 
presented. The computed square values tend to agree quite well with experiment at low a, but 
become somewhat high at the higher angles of attack. The diamond orientation results agree well 
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with the wind tunnel results at low and high a, but tend to be somewhat high in the middle of the 
angle of attack range. Once again, transition effects are a possible cause at these low Mach numbers. 

The next data set22 was taken on a family of configurations similar to the one above. The 
various components are shown in Figure 34. The diameter of the circular cross section and the width 
of each square cross section was assumed to be 3 inches from information given in the reference. The 
corner radii of squares correspond to k values of 0.0, 0.167, and 0.333. The power law nose section 
is 10 inches long and the body is 30 inches long. The wind tunnel tests were conducted at Mach 
numbers of 0.5,0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 at a constant angle of attack of 20 deg. Data was 
taken over an a range of 0 to 30 deg at M = 0.9. The average Reynolds number was 700000 based 
on the diameter. As in the previous case, wind tunnel runs were conducted for the square orientation 
and at 45 deg roll diamond orientation. For the computations, RN was set to 180000 for the square 
roll position and to 222000 for the diamond position. AMN was kept at 0.0 for all runs. The 
M = 0.9 normal force coefficient comparisons for the square roll orientation are shown in Figure 35. 
As usual, the circular body results are shown for reference. In general, the AP98 numbers compare 
favorably to the wind tunnel data with any significant differences tending to be on the high side. This 
tendency is consistent with the circular body results, which also tend to be high. Figure 36 shows the 
same behavior for the diamond roll configuration. Figures 37 and 38 show the a = 20 deg 
comparisons for the entire Mach number range for squares and diamonds, respectively. Again, in 
most instances, agreement between the AP98 results and the experimental values is quite good. Note 
in Figure 37 that the normal force for the k = 0.0 body is considerably higher than for the others. This 
is due to the fact that subcritical flow exists on this body while supercritical flow is present on the 
bodies with more rounded corners. Also note that the normal force coefficient for the circular body 
is slightly higher than that for the k = 0.333 body. This occurs because the equivalent area on which 
the coefficients are based is different for each configuration. It is smaller for the circle, which 
increases the coefficient enough to compensate for the fact that the actual normal force value is 
slightly higher for the k = 0.333 body. 

The next experimental data set was taken from Reference 37. The wind tunnel models tested 
are shown in Figure 39. They consist of an ogive-cylinder body with a diameter of 56.2 cm and a 
square cross section body with a side length of 50 cm. The square was rounded to a k value of 0.1. 
The tests were carried out at a constant Mach number of 0.75. There was no Reynolds number given, 
so the input Reynolds number for the computations was selected to give supercritical flow conditions 
that seemed to match the experimental resultsfairly well. Both the square and diamond roll positions 
were considered. Figure 40 illustrates the normal force comparisons between AP98 and experiment 
for the body-alone case. The agreement is good across the board, with the exception of the diamond 
at higher a. Here, the data indicates that subcritical flow begins to establish itself around a = 12 deg. 
whereas the theory continues to show supercritical flow. 

The 3:1 elliptical body of Reference 27, as illustrated in Figure 41, was considered next. It 
consists of a power law nose with a 3:1 elliptical cross section and no afterbody. The wind tunnel 
experiments were conducted at Mach numbers of 2.0, 2.5, 3.0, 4.0 and 5.0. At these Mach numbers, 
there are essentially no transition effects to be factored in, so the computations were performed by 
setting the input Reynolds number below transitional values. The resulting comparisons on normal 
force are shown in Figure 42 for the M = 2, 3 and 5 cases. Once again, reasonable agreement is 
achieved in most cases. 
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The final body-alone case is illustrated in Figure 14. In the roll orientation shown, it consists 
of a body that begins as a 0.5:1 ellipse on the nose and then transitions to a 2:1 ellipse on the 
afterbody. This will be referred to as the $ = 90 deg roll position. If the body is rolled 90 deg so that 
the nose portion is now a 2:1 ellipse and the afterbody is the 0.5:1 ellipse, then it is in the O = 0 deg 
roll position. Both configurations were tested in the wind tunnel at Mach numbers of 0.6, 0.9, 1.2, 
1.5, and 2.0. The Reynolds numbers, based on the equivalent diameter of the body, were 650000 for 
M = 0.6 and 0.9 and 380000 for M = 1.2, 1.5, and 2.0. For the AP98 computations, RNc was set 
to 286000 for the O = 0 deg roll position and to 330000 for the $ = 90 deg position. AMN° was set 
to -0.1 for all runs except for the O = 90 deg roll position at M = 0.9, where it was set to 5.0. The 
normal force comparisons for these two configurations are shown in Figures 43 A, 44,45A, 46 and 
47A for M = 0.6, 0.9, 1.2, 1.5, and 2.0, respectively. Inspection of the figures will show that the 
overall agreement of AP98 with experiment is good. Predicted center of pressure locations for these 
two configurations are shown in Figures 43B, 45B and 47B for Mach numbers of 0.6, 1.2, and 2.0. 
Above 8-deg angles of attack, agreement with wind tunnel data is good except for the $ = 0 deg roll 
position at M = 0.6. Transition modeling effects are the most likely cause of these deviations. For 
an example of the center of pressure shifts that can be caused by transition from supercritical to 
subcritical flow, observe the shift of just over one caliber that occurs between a = 20 deg and 
a = 24 deg for the 3> = 0 deg configuration in Figure 43B. 

3.2      BODY-WING AND BODY-WING-TAIL CONFIGURATIONS 

The first wing-body configuration to be investigated was from Reference 29 and is illustrated 
in Figure 30. Only the blunt-nose body was used in the fin analysis. Wind tunnel tests were 
conducted for bodies of all cross sections fitted with the Fl fin. Fins F2 and F3 were tested only on 
the square body with k = 0.2. All runs were repeated with the bodies rolled 45 deg into the diamond 
configuration. The fins were mounted on the corners of the body in all cases so that in the square roll 
position, the fins are in an "x" or cross-position; and in the diamond cases, the fins are in a "+" or plus 
roll position. The Mach number was a constant 0.31, and the Reynolds number was 1.3 million per 
foot. For the AP98 runs, RN was set to 285000 and AMN to -0.1 in all cases. The comparisons 
of AP98 computations for normal force coefficient with experimental data are shown in Figures 48A 
and 49A for square and diamond cross section bodies, respectively. The circular body results are 
included for reference. The Fl fin configuration was used in all instances. Agreement of AP98 with 
the wind tunnel data is, in general, very good. The greatest deviation for both squares and diamonds 
seems to occur for the k = 0.2 cases at a = 30 deg and may be a transition effect that is not being 
modeled adequately. Figures 48B and 49B show the center of pressure results for squares and 
diamonds, respectively. Agreement with wind tunnel data is very good in all instances. Figure 50 
shows the normal force comparisons for the k = 0.2 square cross section body fitted with the F2 and 
F3 fins. The results for the diamond bodies with these fins may be found in Figure 51. For both cross 
sections, the agreement with wind tunnel data is somewhat better for the F2 fin than for the F3 fin, 
but is of acceptable accuracy overall. 

The next wing-body configuration to be considered was the one from Reference 37 illustrated 
in Figure 39. Both the 56.2 cm diameter circular and the 50 cm square bodies were run with the 
AP98. The fins were located in an x-roll position. The Mach number of the wind tunnel tests was 
0.75.   No Reynolds number was given; therefore, as in the body-alone computations for this 
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configuration, the input Reynolds number was set sufficiently high to give supercritical flow. In this 
instance, however, as well as in all cases involving lifting surfaces, it is assumed that supercritical flow 
cannot be established in the vicinity of wings or fins. An override has been added to AP98 to force 
subcritical flow in a two-chordlength region in the vicinity of lifting surfaces. The length is adjusted 
in some cases, such as for fins mounted at the extreme aft end of the body. Figured shows the 
normal force comparisons for this configuration. As can be seen, the agreement with wind tunnel 
data is acceptable. 

The next lifting surface cases to be run were taken from Reference 6 and are illustrated in 
Figure 53. Each configuration has a 2:1 elliptical body. One has a large wing mounted near mid- 
body and the other has the same wing but, in addition, a vertical-horizontal tail assembly mounted at 
the rear of the body. The wind tunnel tests were conducted at Mach numbers of 0.6 and 2.0 with 
corresponding Reynolds numbers, based on equivalent body diameter, of 430000 and 380000. For 
the AP98 computations, RN(_ was set to 330000 and AMN to -0.1. The comparisons for the normal 
force coefficients for the wing-body configuration are shown for both Mach numbers in Figure 54A 
and for the wing-body-tail configuration in Figure 55A. In both cases, the agreement is very good. 
Center of pressure predictions for these two configurations are shown in Figures 54B and 55B. As 
for the normal force coefficients, agreement with experimental data is very good. 

3.3       COMPLEX CONFIGURATIONS 

Two examples of more complex shapes were selected for validation purposes to see how well 
their aerodynamic characteristics could be approximated by the simple shapes included within the data 
base used to calibrate the methodology. The first of these is shown in Figure 56. It is a waverider 
designed to operate at Mach 14 and consists of a near-triangular shaped lifting body.38 Its overall 
length is 39 inches and its span is 16.2 inches. The base height is 6.84 inches. The Reynolds number 
for the wind tunnel tests was 2 million per foot. At this high Mach number, there is no issue of 
subcritical versus supercritical flow, since by a = 2.5 deg. the crossflow Mach number is already 
beyond the region of the drag bucket. The computed and experimental values of lift coefficients are 
shown in Figure 57A. Note that these lift coefficient values are based on the planform area of the 
body (375 in.2). The agreement is very good, indicating that the new methodology may indeed be 
applied to configurations that are reasonable approximations to the basic geometric shapes included 
within AP98. Comparisons for axial force coefficients and pitching moment coefficients are presented 
in Figures 57B and 57C. Agreement with wind tunnel data is quite good considering the 
approximations made in modeling the geometry. 

The final configuration considered is shown in Figure 58. It consists of a lifting body with 
variable sweep wing panels. In this case, we have a body that appears at first glance to be an inverted 
triangle, but the lower angle is only 45 deg and not 60 deg. In this sense, it resembles the lower half 
of a diamond. For comparison purposes, it was decided to run this example as both an inverted 
triangle and a diamond, both with sharp comers since the top corners were thought to be more 
influential on the flow field. The wing panels were modeled at a 40 deg leading edge sweep. 
Computations were performed for Mach numbers of 0.4, 0.6, and 0.8 with corresponding^Reynolds 
numbers, based on the maximum body chord of 5.04 million, 7.2 million, and 9.36 million. 
respectively.   RNc was a constant 330000 for all runs.   AMN   was adjusted as follows. For the 
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diamond it was 0.08 at M = 0.4 and 0.17 for M = 0.6 and M = 0.8. For the inverted triangle, it was 
0.11 at M = 0.4,0.21 at M = 0.6, and 0.26 at M = 0.8. The lift coefficients for the wind tunnel tests 
and the AP98 computations for both body shapes are shown for the three Mach numbers in 
Figures 59 through 61. The coefficient values shown are based on the planform area of the body 
(96.2 in."2). On balance, both approaches give acceptable results, with the diamond being somewhat 
better in most cases. The diamond may give these good results because it more closely represents 
the true angle on the body's lower surface, and it is the windward side aerodynamics that dominate 
the flow field. 
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FIGURE 44. NORMAL FORCE COEFFICIENTS FOR BODY OF FIGURE 14 
WITH VARIABLE ELLIPTICAL CROSS SECTION AT TWO ROLL 

POSITIONS AND M = 0.9 
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FIGURE 49. AERODYNAMIC DATA FOR WING-BODY CONFIGURATIONS OF FIGURE 30 
WITH DIAMOND BODIES OF VARIOUS CORNER RADII (FIN Fl): (A) NORMAL 

FORCE COEFFICIENT, (B) CENTER OF PRESSURE 
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FIGURE 52. NORMAL FORCE COEFFICIENTS FOR CIRCULAR AND 
SQUARE BODIES OF FIGURE 39 WITH FINS AT * = 45 DEG 
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FIGURE 56. WIRE-FRAME GEOMETRY OF THE WAVERIDER (FROM REFERENCE 38) 
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4.0 SUMMARY 

An improved method has been developed to compute aerodynamics of noncircular cross 
section shapes. The improved method is based on the Jorgensen6"10 approach of computing 
aerodynamics on a noncircular body using circular-body methods; on the Nelson03 approach for 
noncircular wing-body interference corrections at low AOA; and on the method of References 13 and 
32 for including nonlinearities in the wing-body interference aerodynamics. The new method extends 
these approaches in several significant ways so as to make the method more general and applicable 
to most configurations of noncircular cross section. 

Specific additions to the current state-of-the-art (SOT A) include: derivation of the Newtonian 
approximation to the local normal force coefficient per unit length of a noncircular shape to the 
similar coefficient of a circular shape; derivation of an empirical correction to these Newtonian factors 
to account for the assumption of high Mach number in their derivation; derivation of an empirical 
estimate of critical crossflow Reynolds number as a function of the noncircular geometry shape; a 
method to treat wing-body interference factor corrections as a function of body geometry and 
freestream parameters; derivation of slender body theory scaling factors to allow aerodynamics to be 
computed and compared to wind tunnel data where the equivalent diameter or a diameter equal to 
the side of a square or triangle is used in the data gathering; and an approximate way of treating 
configurations that have variable, noncircular cross-section shapes. 

The new method was applied to all the noncircular configurations found in the literature for 
which data was available. This included elliptical cross sectional shapes with a/b from 0.5 to 3.0, 
Mach numbers 0.6 to 3.88, and AOA as high as 58 deg, and some cases with wings; square and 
triangular cross sectional shapes with sharp and rounded edges, at mostly lower Mach numbers, but 
some data at Mach number as high as 4, AOA as high as 58 deg, and some cases with wings; a single 
configuration with a variable cross section shape at Mach numbers 0.6 to 2.0 and AOA to 60 deg; 
and to two configurations that were quite complex and did not fit within the exact requirements of 
the geometry options. Results in general for planar aerodynamics were very good. While it is too 
early to state the overall accuracy of the new nonaxisymmetric body aerodynamic prediction method, 
it appears the normal force is almost as good as the circular body predictions. To date, we have not 
found a circular body configuration where average accuracy on CA, CN exceed ±10 percent and XCP 

exceeds ±4 percent of the body length. Here average means enough Mach numbers and AOAs to 
get a good statistical sample. 

While the additions to the SOTA in computing approximate aerodynamics are significant, 
there still remains several challenges. The first and foremost is to compare the present predictions 
of static aerodynamics to more data. Since many data bases shown in the literature focus on normal 
force, additional data or CFD computations may be needed to validate and/or modify the axial force 
and center of pressure prediction techniques. Hopefully, the ballistics range tests at Eglin AFB will 
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partially address this problem for axial force and low AOA center of pressure prediction. Secondly, 
it is suspected that once more zero angle of attack axial force data is available, the assumption of the 
wave drag on the nonaxisymmetric body being equal to that of the axisymmetric body may need to 
be adjusted. Finally, it is suspected that the Newtonian correction factor for triangles and squares 
could be improved upon with more data. 
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6.0 SYMBOLS AND DEFINITIONS 

AOA Angle of Attack 

APC Aeroprediction code 

AP95 Aeroprediction 1995 

AP98 Aeroprediction 1998 

LT Linear theory 

NSWCDD Naval Surface Warfare Center, Dahlgren Division 

SBT Slender body theory 

Ac Cross-sectional area of circular cylinder (ft2) 

Ae Cross-sectional area of circular cylinder equal to that of body with 
noncircular cross section 

Aj Apparent mass values from slender body theory (from Reference 16) 

Ajgf Reference area (maximum cross-sectional area of body, if a body is 
present, or planform area of wing if wing alone) (ft2) 

a,b Semimajor and semiminor axis, respectively, of ellipse 

a' Body shape parameter (see Reference 34) 

A(x) Body cross-sectional area as a function of position along body axis 
(ft2) 

AR Wing or tail aspect ratio 

Cir Circumference of body (ft) 

CA Axial force coefficient 

(CA)B=O Axial force coefficient at zero degree angle of attack 

C. Axial force coefficient component due to base pressure 
AB 

C. Axial force coefficient component due to skin friction 
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CA Axial force component due to forebody and boattail or flare pressure 

CD Drag coefficient 

Local and total crossflow drag coefficients 

Subcritical and supercritical value, respectively, of Cd 

Pitching moment coefficient 

Linear component of pitching moment coefficient 

Nonlinear component of pitching moment coefficient 

Ratio of the local normal force coefficient of a body with a noncircular 

cross section to that with a circular cross section calculated by slender 
body and Newtonian theory respectively 

Total normal force coefficient 

Normal force coefficient of the body 

Linear component of the normal force coefficient 

Nonlinear component of the normal force coefficient 

Normal force coefficient slope of wing and tail respectively 

Normal force coefficient on tail due to wing-shed vortices 

Pressure coefficient 

Base pressure coefficient 

Local pressure coefficient at orifice i (Table 1) 

Stagnation pressure coefficient 

Root chord of lifting surface (ft) 

Diameter of body and base diameter of body respectively 

Ratio of wing-body interference factor of a noncircular cross-section 

configuration to that of a circular cross-section configuration 
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k Parameter used to define corner radius for squares and triangles 
(k = rn/WM) 

kB(w), kB(T) Ratio of additional body normal force coefficient due to the presence 
of a deflected wing or tail to that of the wing or tail alone at a = 0 deg 

kw(B)' kT(B) Ratio of normal force contribution of a deflected wing or tail in the 
presence of a body to that of the wing or tail alone at a = 0 deg 

K Ratio of lifting surface normal force coefficient in the presence of a 
body to that of the lifting surface alone at ö = 0 deg 

KB(W), KB(T) Ratio of additional body normal force coefficient in the presence of a 
wing or tail to that of the wing or tail alone at ö = 0 deg 

[KB(W)]MIN Minimum value of KB(W) 

KW(B), KT(B) Ratio of wing or tail normal force coefficient in the presence of a body 
to that of the wing or tail alone at ö = 0 deg 

KWB KW(B) + KB(W) 

^ref 
Reference length which is body diameter 

{„ U2, H3, {; Individual segments of body length where body has variable 
noncircular cross section 

M Mach number 

MN Mach number normal to body = M sin a 

MN Normal Mach number where flow transitions from subcritical to 
supercritical conditions 

MN Value of normal Mach number to body used in Newtonian correction 
factor calculation 

M„ Freestream Mach number 

NF Newtonian correction factor 

NF0 Newtonian correction factor for crossflow Mach number of zero on 
squares and triangles 

NF, Newtonian correction factor for an ellipse at a > 20 deg 
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P, P. Pressure and freestream pressure (lb/ft2) 

r Local body radius (ft) 

r«> dcq Radius and diameter, respectively, of a circular cross-section body 
which has same cross-sectional area as that of noncircular cross- 
section body 

rn Corner radius of a rounded corner on square or triangle 

RN Reynolds number 

RN Reynolds  number where  flow  transitions  from  subcritical  to 
supercritical conditions 

RK Reynolds number based on body diameter 

P-xc„ An effective Reynolds number above which the flow transitions from 
subcritical to supercritical conditions 

s Radius of body plus wing or tail semispan 

SBTSF Slender body theory scaling factor 

V, Freestream velocity 

VN Velocity normal to body 

VN-y, Velocity normal to wing 

W Length of one side of a triangle or square 

w
m Maximum diameter of a triangle or square as measured normal to the 

velocity vector 

x Distance along body axis (ft) 

X
CP Center of pressure measured about some reference location 

x
m Reference location about which center of pressure is measured 

a Angle of attack (rad or deg) 

ß Angle between body axis and a tangent to the body surface 
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cc1; a2, ac Values of AOA upon which the nonlinear term of the wing-body and 
aD, aM body-wing interference factors are based 

Y Ratio of specific heats 

ö Deflection angle of control surface (rad, deg) 

T) Parameter used in viscous crossflow theory for nonlinear body normal 
force (in this context, it is the ratio of the normal force of a circular 
cylinder of given length-to-diameter ratio to that of a cylinder of 
infinite length) 

p Density (slugs/ft3) of air 

<3> Roll position of missile (<3> = 0 deg corresponds to fins in the plus (+) 
orientation) and the leeward plane. 3> = 45 deg corresponds to fins 
rolled to the cross (x) orientation 

X Taper ratio of fin = CyCr 

0 Angle between the body axis and a normal to the body surface 
(6 = nil - ß) 
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APPENDIX A 

DERIVATION OF (Cn/C   )N FOR SQUARE AND 
TRIANGULAR CROSS°-SECTION BODIES 

A-l/A-2 
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There are four configurations of interest. These four are shown in Figure A-l. 

[2] [3] [4] 
r = kW„ 

A 
\ 

*—W—H 
1 M-Wm_H 1 

\ V 
t 

• 

1 
VN VK 

FIGURE A-l. ORIENTATIONS OF SQUARE AND TRIANGULAR 
CROSS SECTIONS FOR DERIVATION OF (Cn/Cn )N 

To compute (C /C  )N requires a derivation of the crossflow drag coefficient for each of the four 
cases shown in Figure A-l since 

'O ( C X 

"oj 

(A-l) 
ucy 

Cd of Equation (A-l) is the crossflow drag coefficient per unit length of a circular cylinder of the 
same cross-sectional area distribution as that of the noncircular cross section, whereas Cd is the 
crossflow drag coefficient of each of the shapes in Figure A-l based on the maximum dimension 
normal to the velocity Wm. For the square at <E> = 0 deg, Wm = W, whereas for all the other 
configurations Wm is a function of W and the amount of roundness of a corner, k. For flow over a 
circular cylinder, the Figure A-2 is useful in defining the geometrical variables and flow properties. 

The drag per unit length is the force in the X direction, which is 

■all 

— = 2r f(P - P ) cos 0 d6 
Q J 

(A-2) 

The drag can also be defined in terms of a drag coefficient as 
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VN -► x 

FIGURE A-2. DEFINITION OF FLOW VARIABLES USED IN DRAG INTEGRAL 

j = CD V4pM V2 (2r) (A-3) 

Equating Equations (A-2) and (A-3) and solving for the drag coefficient per unit length, one obtains 

rJ2 

c, — = f  cos e de f     i '/2P.vN
2 (A-4) 

Since 

P - P 
oo 

and by definition from modified Newtonian theory 

Cp = Cp   sin2ß 

Equation (A-4) becomes 
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7t/2 

C   = CD    f sin2ß cos 
o 

'dc        "-Po 
e de (A-5) 

Since ß = TT/2 - 6, Equation (A-5) becomes 

IT/2 

C„   = CD    f cos36 d 0 
0 

(A-6) 

Equation (A-6) becomes, upon integration, 

cd   = - CP °c       3     *o (A-7) 

where Cp  is the stagnation pressure coefficient defined by: 

YM„ 

(Y +1) M: 
Y 

Y-l Y + 1 

2YMJ - (Y - 1) 

Y-l   _   1 (A-8) 

Using this same process of the circular cylinder for configuration [1] of Figure A-l, the drag 
coefficient per unit length is 

W. 

W  -r 

/ 

7t/2 

CD   sin2ö dx + r   f Cp   cos36 d0 
!Cro 

(A-9) 

Note that Wm = W for the square at $ = 0 deg roll. But 6 in the first integral is IT/2 since the surface 
is flat and normal to the velocity vector. Integration of Equation (A-9) yields: 

2 CF w m   _   £ 
3 

(A-10) 

Defining r = kWm, Equation (A-10) becomes 
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C   = 2 C I - i 
2       3 (A-ll) 

Thus if k = 0, we have the square with no rounded corners and Cd = Cp , whereas if k = 0.5, we 
once again have a cylinder and Cd reduces to C.   = (2/3) Cp . ° 

To obtain (CJCuJK, it is necessary to find the diameter, deq, of the equivalent circular cross 
section. The area of the cross section in both sketches [1] and [2] of Figure A-l is 

A = W2 [1 - k2 (4 - 7t)] (A-12) 

The area of the circle is 

A = ^a (A-13) 

Equating Equations (A-12) and (A-13) one obtains 

dpn = 2W 
N 

1 - (4 - 7i)k: 

7t 
(A-14) 

Now referencing Equation (A-ll) to dca versus Wm we have cq 

C   = 2C *~d        Zv-Pr 
fl- ill Zu 

2      3)   d eq 
(A-15) 

Then substituting Equations (A-14), (A-15), (A-7) into Equation (A-l) and simplifying, one obtains 
(where WB = W for the square at $ = 0 deg): 

f c  \ 
n 

V     "o/ 

1 i.M 
2 I 2       3j \ 

71 

1 - (4 - TC) k2 (A-16) 

where 0 < k < 0.5. At k = 0, the square cross section has no rounded corners and at k = 0.5, the 
square converts to a circle. 
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For the square oriented at 45 deg roll to the freestream (see sketch [2] of Figure A-l), the 
drag integral based on the Newtonian pressure coefficient is: 

C, = 
2CF 

~w" 

Wm/2-r+iV2 

r   I   cos30d6 +        f       sin26 dx 
o 

jc/2 

/ / 

sß 

(A-17) 

Wm of Equation (A-17) is the maximum cross sectional width of the square normal to the flow. For 
no rounded corners, it is ß W, whereas for a circle Wm = W = 2r. Integration and simplification of 
Equation (A-17), where r = kWm, yields 

Cd - 2Cpn 

J_ + k 
4 + 6 

(A-18) 

Notice that when k = 0, Equation (A-18) gives a Cd of half that of Equation (A-l 1). However, basing 
Equation (A-18) on the equivalent circular diameter given by Equation (A-14) yields 

Cd = 2CPn 
J_ + k 
4 + 6 

W_ 

eq 

(A-19) 

Then, the value of the local normal force coefficient defined by Equation (A-l) becomes 

(cn/cno)N = - J_ + k 
4  +  6 

% m 

N 1 - (4 - 7i) k: I Wj 
(A-20) 

Since Wm for the square at O = 45 deg varies as, 

Wm = W [ß (1 - 2k) + 2k] (A-21) 

Equation (A-20) can be written as: 

(cn/cno)N = - J_ + k ■K 

4       6J \  l - (4 - TC) k: 
[ß (1 - 2k) + 2k] (A-22) 
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The value of (Cn/Cno)N thus varies between 0.94 for no rounded comer to 1.0 for a circle according 
to Newtonian theory. It should also be pointed out that for a given value of r for case [1] and [2] of 
Figure A-l, the value of k will change since k = r/Wm and Wm is different for the two cases. 

The Newtonian drag coefficient of the third case in Figure A-l is identical to that of the first 
case. Hence, Equation (A-l 1) applies to this case. However, the equivalent diameter is different due 
to the triangular shape. The cross sectional area of both the cases [3] and [4] of Figure A-l is 

A = W2 I 
4 

k2 (3v/3 - 7i) 

.1  + 2k (v/3 -  l)]2 
(A-23) 

Equating Equation (A-23) to Equation (A-13) and solving for dcq we obtain 

2W v/3 _       k2 (3y/3 - 71) 

[4       [l  + 2k (v/3 -  I)]2 

11/2 

Since W = Wm [l  + 2k (fi -  1)], Equation (A-24) can also be written as 

(A-24) 

eq 2W 1  + 2k (y/3 -  1) 

yfH 
v/3   _ k2 (3y/3  -   7t) 

[l  + 2k (v/3 - l)]2 

1/2 

(A-25) 

Thus, the crossflow drag coefficient per unit length of configuration [3] of Figure A-l, based on the 
reference diameter d_ is 

C   = 2C 
w_ 

eq 

= cr 
yfH W3_  _        k2 (3y/3  -   71) 

1  + 2k {fi -  1)   (4        [j  + 2k (v/3 -  l)]2 

1/2 

(A-26) 

Finally, the local normal force coefficient ratio may be found by utilizing Equations (A-l). 
(A-7) and (A-26) to obtain: 
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(cn/cno)N = - yfÜ 

1 + 2k (73 - 1) 

v/3 _      k2 (3^3 - it) 
4       [l + 2k (V3 - l)]2 

1/2 

(A-27) 

Equation (A-27) varies between just over 2.0 at k = 0 to a value of 1.0 when k = 0.5. 

The local crossflow drag coefficient integral for the fourth case of Figure A-l is: 

2CF 
2 2 2 

f cos36d6 + f sin26 dx 

0 r>/3 

(A-28) 

For this configuration, ö is a constant value of 30 deg all along the flat side of the triangle that the 
flow touches. As a result, Equation (A-28) becomes upon integration: 

C„ = 
2CF w_ 5r 

8 12 
(A-29) 

Since r = kWm and deq is defined by Equation (A-25), Equation (A-29) can be rewritten, when based 
on the equivalent diameter of a circular body as 

C   = C 
J_ + 5k 
4 +   6 

\pK 

.  2[1 + 2k (/3 - 1) 

\/3~ _      k2 (3y/3 - 7t) 

.4        [l + 2k (fi - l)]2 

■1/2 

(A-30) 

The local Newtonian normal force coefficient ratio for case [4] of Figure A-l then becomes 

( C. ^ 3 1       5k —    +      
4 4       6 

yfjz k/3   _ k2  (3y/3   ~   71) 

1 + 2k (v/3 - 1) P~      [i + 2k (v/3 - l)]2 

Vl/2 

(A-31) 

Equation (A-31) varies from a value of about 0.5 when k = 0 to a value of 1.0 when k = 0.5. 
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APPENDIXE 

SCALING CONSIDERATIONS BASED ON SLENDER BODY THEORY (SBT) 

B-l/B-2 
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In the normal course of calculating aerodynamics of a given configuration, understanding the 
effects of scale are important. For example, when one tests a model in the wind tunnel, generally that 
model is geometrically scaled in terms of its configuration shape so aerodynamics will be 
approximately the same. However, experience has taught us that boundary layer transition naturally 
occurs on a smooth wind tunnel model at a much higher value than on a rougher flight vehicle. This 
knowledge, along with tunnel test conditions, allows us to predict aerodynamics on a scaled wind 
tunnel model and indicate the approximate difference to a flight vehicle model. The major difference 
is generally a slightly different value of axial force coefficient. 

The matter of scaling is quite important in development of the aerodynamic prediction code 
for nonaxisymmetric bodies. The reason is that we are trying to accomplish this task based on an 
equivalent axisymmetric body. Secondly, the scaling issue is important because in some of the 
literature, tests are conducted on noncircular cross section bodies with a constant dimension and 
compared to that on a circular cylinder with a diameter equal to that same dimension. Fin shape is 
generally the same for these cases. Other tests have been conducted on noncircular bodies where the 
body cross section area is held constant and equal to that of a circular body. Again fin shape is 
generally constant. The question arises as to whether one can use the same overall approach to 
calculate aerodynamics of these two cases and if so, are there scaling factors that need to be 
considered to compare one case to another. 

To investigate first order effects of scale on linear normal force of bodies and wing-body 
combinations, slender body theory (SBT) is an excellent method to consider. References B-l and B-2 
were the primary materials used for this analysis. SBT basically assumes the configuration is fairly 
smooth and slender with no discontinuities along the body surface. This type of contour will then 
minimize the perturbation in the freestream due to the presence of the body. It allows the equations 
of motion to be linearized as a result. Generally, the flow is assumed to be isentropic due to only 
weak shock waves being created by this slender, smooth body. While these assumptions seem rather 
strong, some good qualitative insight in terms of aerodynamic trends can be obtained, although the 
magnitudes of the numbers can be in substantial error. SBT is quite useful for the purpose of 
investigating the issues addressed here concerning scaling. 

The normal force of a given wing-body configuration is given by 

N   =  NB   +  NW(B)   + NB(W) (B-l) 

where NB is the normal force of the body alone, NW(B) is the normal force on the wing in presence of 
the body and NB(W) is the additional normal force on the body caused by the presence of the wing. 
Figure B-l is a sketch of a typical wing body showing the important configuration dimensions. 

SBT defines the body alone lift as simply that due to the nose with no contribution from the 
afterbody. This value is 

NB = 2aQ7irb
2 (B-2) 
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FIGURE B-l. CIRCULAR WING-BODY GEOMETRICAL PARAMETERS 

Here rb is the radius of the base of the configuration. SBT also assumes the wings extend to the mid 
body. The normal force of the last two terms is 

N\v(B) + NB(W) - [KW(B) + KB(W)] Nw (B-3) 

also 

KW(B)   +   ^-BOAO '..iV (B-4) 

and 

Nw - 27taQ(s - r)2 
(B-5) 

Substituting (B-2), (B-3), (B-4), (B-5) into Equation (B-l) and dividing through by QSref to put 
Equation (B-l) in the form of a coefficient, one obtains: 

CN = 
2a7t 

{r^ + s^l -2(r/s)2 + (r/s)4]} (B-6) 
Jrcf 

body term       wing-body term 
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If one combines the two terms in Equation (B-6), one obtains the usual expression given in 
References B-l and B-2 for total configuration normal force coefficient as 

27T0CS2 

[l - (r/s)2 + (r/s)4] (B-7) 
'ref 

using body cross section area as Sref. Equation (B-7) can be further written as 

2a ^2 

Vr7 

(r/s)2 (B-8) 

Equation (B-8) gives us some very simple and important information concerning scaling. It 
basically says that if you take two different wing-body configurations which both obey the slenderness 
requirements, the normal force coefficient of the two configurations will be the same at any Mach 
number for a given angle of attack if r/s of the two configurations are equal. 

The question we now need to address is if one can use the information given by 
Equation (B-6) to help one answer some of the scaling issues associated with creating an 
axisymmetric body to calculate aerodynamics of a noncircular cross section body. To address this 
question, several examples will be considered. The first example is illustrated in Figure B-2. This 
figure maintains a body circular diameter that is equal to one side of the square. Thus, r/s for the two 
cases is the same. Referring back to Equation (B-6) where the body and wing-body contributions 
have been separated, the implication of this analogy is that the wing-body term will remain constant 
for the two cases in Figure B-2 since r/s is the same. However, the body cross sectional area of the 

Noncircular 
Cross Section 
Wing Body 

Circular Cross 
Section Wing Body 
Representation 

FIGURE B-2. EXAMPLE OF A CIRCULAR WING BODY REPRESENTATION OF 
A NONCIRCULAR CONFIGURATION WHERE BODY DIAMETER IS MAXIMUM 

DIMENSION OF NONCIRCULAR SHAPE 
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noncircular case is different from the circular case. Thus, the first term of Equation (B-6) must be 
multiplied by this ratio. In other words, the aerodynamics of the noncircular cross section of Figure 
B-2 can be estimated using the circular cross section case of Figure B-2 and Equation (B-6) as 

CN = 
2a7i ( A  ^ 

c / 
+  S' 2(r/s)2 

(B-9) 

Using this information for the aeroprediction code, this says we should multiply the body term by 
(ANC/AC) if we represented it by an equivalent circular body of diameter W. This applies also to 
comparing predictions to wind tunnel data which were taken in this manner. Note that Figure 13 of 
the main text is already based on a configuration of diameter equal to that of one side of a square or 
triangle. Hence, this figure can be used directly without any scaling factors for the case shown in 
Figure B-2. 

A second example of estimating aerodynamics of a noncircular body by a circular body is 
illustrated in Figure B-3. Here the circular body diameter is equal to the equivalent diameter of a 
circular cylinder of the same cross sectional area of the noncircular shape. For this case, the body 
contribution of Equation (B-6) has a factor of one since the cross sectional area of the circular and 
noncircular shapes are the same. However, the r/s values of these two cases are different. This 
means that the wing-body contribution of Equation (B-6) for the squares or triangles must be 
multiplied by the factor 

eq 

'sV 
eq 

'rV 
eq 

V 
V s/ i 

/     \4 r 
(B-10) 

r ^ 
! 

• b/2 

i  /rn 
s 

-w„ 

FIGURE B-3. EXAMPLE OF A CIRCULAR WING BODY REPRESENTATION OF 
A NONCIRCULAR CONFIGURATION WHERE BODY DIAMETER IS 

EQUIVALENT DIAMETER 
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Note here that (r/s^ is relative to the noncircular body where the fins are located. This factor from 
Equation (B-10) must be used in conjunction with Figure 13 of the main text, which was based on 
wind tunnel data taken on a configuration of side W and normalized by the circular cylinder value of 
2.0. On the other hand, for the elliptical KW(B) values of Figure 10A, the factor from Equation (B-10) 
is not needed. This is because Figure 10A was derived based on a body of diameter deq. Note that 
the values of KW(B) in Figure 10A are much higher than those in Figure 13. This is partially due to 
the fact that the aerodynamics of an ellipse were based on d^, and KW(B) of Figure 13 was derived on 
that basis. 

The above analysis has shown that even if aerodynamics are estimated based on some 
reference diameter, they can be compared to wind tunnel data based on a different diameter by using 
the SBT scaling factors (SBTSF) of Equation (B-9) for the body or Equation (B-10) for the wing- 
body. 

As an example application of the Equation (B-10) scaling factors, consider the configuration 
of Figure B-4. Appendix A gives the equations for deq(=2req) and Wm(=2ri) for the triangle as a 
function of W and the corner rounding parameter k. For simplicity, let's assume the corner is sharp 
so k = 0 and Wm = W. For this case, deq = 0.743W. Also, for simplicity, assume W = b. Then, 
applying Equation (B-10) to Figure B-4 (since here we are keeping the area of the circle the same as 
the area of the triangle), one obtains for the SBTSF 

SBTSF 

( 0.377W + W/2^1 
0.743W 

' W/2 + W/2U 

W 

1 - 2 
0.377W 

0.377W + W/2, 

0.377W 

0.377W + W/2 

1 - 2 
W/2 

W/2 + W/2, 
|V W/2 \ 

^ W/2 + W/2 

1.39   [1 - 0.37 + 0.034] 
1     [1 - 0.5 + 0.0625] 

1.64 

FIGURE B-4. EXAMPLE APPLICATION FOR SBTSF OF EQUATION B-10 
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Now referring to Figure 13, the value of [KW(B)]NC/[KW(B)]C at k = 0 for the triangle shape is about 
0.75. Multiplying this value by 1.64, one obtains [KW(B)]NC/[KVV(m]c = 1.23. This slays that when we 
take a configuration such as the triangular shape of Figure B-4, represent it by a circular shape of 
diameter dcq. keep the fins constant, the value of the circular KW(B) must be increased by 23 percent. 
Notice that had we represented the triangular shape by a circular shape of diameter W, the wing-body 
SBTSF is one. since r/s of these two shapes is the same. However, the body term must be multiplied 

or 0.522.    Also, KW(B) of Figure 13 is applied directly.   Also, the value of by 
0.743W 

W 
Equation (B-10) is a function of b/2, k, configuration shape as well as (r/s), and (r/s) . A single case 
was chosen where values of these parameters were selected for illustration purposes. 

To summarize, if we define (SBTSF), and (SBTSF)2 as that associated with the body and 
wing-body normal force components respectively, then one can write 

C. (SBTSF). + CN 
+ cx 

W(B1 'BOW) 
(SBTSF), (B-ll) 

If the aerodynamics are based on as a reference area and wind tunnel data was taken that way 
then 4 

(SBTSF),   = 

(SBTSF),   = 

'd   ^ 

(B-12) 

7id" 
On the other hand, if the aerodynamics are based on —^ as a reference area and wind tunnel data 
was taken that way, then 4 

(SBTSF).   =   1 

( 

(SBTSF),   =   —is 
's^2 

v r; 

1 - 2 
/   \ ? r 

V V eq eq (B-13) 

1-2U      +    I 

Ttd r 
Finally, if the aerodynamics are based on —^ and we wish to compare these aerodynamics 

TtW2 

to those that are based on a reference area of 
-W\   . 4 

on  ). then 
(where wind tunnel data was also taken based 
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(SBTSF)j 

(SBTSF), 

'd  U 
eg 

eq 

1   - (B-14) 

Equations (B-13) and (B-14) are needed for square and trianglar cross section shapes because KW(B) 

(Figure 13) was derived on the basis of a body with diameter W. Equations (B-13) and (B-14) are 
not needed for elliptical shapes because KW(B) (Figure 10A) was derived on the basis of a body with 

diameter d„. If one were interested in deriving aerodynamics of an ellipse based on 
TCW 

7td, 
-eq 

versus 

—, then new SBTSFs would be needed for this case in analogy to those for square and triangular 
4 

shapes. 
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